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1. Introduction

In (2+1)-dimensional Chern-Simons gauge theory, a particular role is played by
the corresponding condensate (or multivortex) solutions which are believed relevant
in several aspects of theoretical physics.

Although the presence of multivortices has been predicted experimentally, still
in the general framework of Chern-Simons theory, it is very difficult to obtain them
analytically. Thus, a special effort has been devoted to derive specific models for
which more convenient selfdual equations would hold for the corresponding energy-
minimizing multivortices. See the recent monograph [4].

Through an approach of Taubes [15], the process of solving these selfdual equa-
tions is reduced to solving suitable elliptic equations for the logarithmic values of
the particle density. The elliptic equations so derived are of Liouville-type. It is
necessary to solve them on the 2-dimensional torus in order to obtain the desired
condensate solution subject to ’t Hooft periodic boundary conditions.

Here we consider a particular class of these equations which were derived in [14].
More precisely, [14] is concerned with a selfdual model introduced in [5] and [6]; it
establishes the existence of a new class of condensate solutions which are absent in
the classical vortex theory.

When the vortex number N = 1 and the Chern-Simons coupling constant tends
to zero, in [14] it is shown that the asymptotic behavior of the new type of conden-
sates can be described in terms of solutions of the limiting equation

−∆u = λ

(

ew0+u

∫

Ω
ew0+u

− 1

|Ω|

)

on Ω (1)

with λ = 4π, Ω being the 2-dimensional torus and w0 an assigned function.

Notice that for λ ∈]0, 8π[ existence for (1) is an easy consequence of the Moser-
Trudinger inequality [9]. To extend this argument to condensate solutions with
vortex number N ≥ 2, it is necessary to insure the existence of solutions for (1)
when λ ≥ 8π. This is exactly the task we have taken up here. We treat the case
w0 = 0 and show that (1) admits a nonconstant solution for every λ in the range
8π < λ < 4π2.

By a result of Ricciardi-Tarantello [10], we can also guarantee that those solutions
are “truly” two-dimensional in the sense that they cannot reduce to a (periodic)
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function of one variable. Incidentally, let us also point out that the analogous
problem (with w0 = 0) subject to Dirichlet boundary conditions

−∆u = λ
eu
∫

Ω
eu

on Ω,

u = 0 on ∂Ω

(2)

where Ω ⊂ R
2 is a bounded domain, plays an important role in the context of

statistical mechanics of point vortices in the mean field limit where (2) is referred
to as the mean field equation; see [2], [3], [7].

Since for 0 < λ < 8π and Ω simply connected (2) is known to admit a unique
solution (see [13]), by analogy one would be tempted to conjecture that problem
(1) with w0 = 0 and 0 < λ < 8π also admits only the trivial solution u = 0. We can
establish this result only for λ small (see section 5) but we are not certain about
its validity in the whole range ]0, 8π[. In fact, our result shows that there is an
important difference between problems (1) (with w0 = 0) and (2), as problem (2)
admits no solutions for λ ≥ 8π, if Ω is a ball.

Acknowledgements: The authors wish to thank Y.Y. Li and S. Müller for
useful discussions.

2. Main result

Let Ω be the 2-dimensional torus, with fundamental cell domain: [− 1
2 ,

1
2 ] ×

[− 1
2 ,

1
2 ]. Consider the problem

−∆u = λ

(

eu
∫

Ω
eu dx

− 1

)

onΩ, (3)

or, equivalently, solutions of (3) on R
2 of period 1 in each variable. For fixed λ, we

refer to equation (3) as (3)λ. Shifting a solution u of (3)λ by a constant, we again
obtain a solution. We normalize solutions by requiring

∫

Ω
udx = 0.

Notice that u = 0 is always a solution of (3)λ ; here we seek nontrivial solutions.

Let E = {u ∈ H1(Ω);
∫

Ω
u dx = 0} with norm ||u|| =

∫

Ω
|∇u|2 dx. Then (weak)

solutions of (3)λ correspond to critical points of the analytic functional

Iλ(u) =
1

2
||u||2 − λ ln(

∫

Ω

eu dx) onE.

Remark 1.1. By Jensen’s inequality we have
∫

Ω
eu dx ≥ e

∫

Ω
u dx

= 1 for all u ∈ E;
in particular, the map λ → Iλ(u) is monotone decreasing for any u ∈ E.

Remark 1.2. By Trudinger-Moser’s inequality [9], it is easy to check that, Iλ is
bounded from below, coercive and lower semicontinuous if λ < 8π. So Iλ achieves
its infimum, which, however, could correspond to the trivial solution u = 0.

On the other hand, we shall see that for λ > 8π the functional Iλ is unbounded
from below, while the trivial solution u ≡ 0 remains a strict local minimum for
λ < 4π2. Thus, for 8π < λ < 4π2 the functional Iλ exhibits a mountain-pass
structure and we expect the existence of non-trivial critical points of Iλ for λ in
this range. This, in fact, is our main result.
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Theorem 2.1. For every λ ∈]8π, 4π2[ there exists a non-trivial solution uλ of (3)λ
satisfying Iλ(uλ) ≥

(

1− λ
4π2

)

c0 for some constant c0 > 0 independant of λ.

The solutions uλ will be obtained by a variational method using, in particular,
the strategy of obtaining a priori bounds on Palais-Smale sequences by parameter
variation, as introduced in [11], [12]. We expect these solutions to form a continuous
“branch”, bifurcating from the trivial branch u ≡ 0 at λ = 4π2 and asymptotic to
the line λ = 8π. However, at this stage we cannot rigorously prove that this is the
case. Moreover, we do not know if non-trivial solutions also exist for λ ≤ 8π, in
particular, for λ = 8π, but some analytical evidence seems to suggest that they do.

We also point out that the solution uλ cannot reduce to a (periodic) function of
one variable. In fact, for the corresponding one-dimensional problem:

ü+ λ





eu

∫ 1/2

−1/2
eu

− 1



 = 0 (4)

a recent result of Ricciardi-Tarantello [10] asserts that (4) admits a nonconstant
solution of periodic T = 1 if and only if λ > 4π2. Thus, Theorem 2.1 captures, in
an essential way, the two-dimensional nature of problem (3)λ and this justifies the
special role played by the value λ = 8π.

3. Existence of solutions for almost every λ

In a first step we show that nontrivial solutions to (3)λ exist for almost every
λ ∈]8π, 4π2[.

Lemma 3.1. If λ < 4π2, then u = 0 is a strict local minimum for Iλ.

Proof. Iλ is smooth. Thus it suffices to observe that the second variation of Iλ at
u = 0 in direction υ ∈ E can be estimated

I ′′λ(0)(υ, υ) = ||υ||2 − λ

∫

Ω

υ2 dx ≥
(

1− λ

4π2

)

||υ||2.

✷

For ε > 0 and x ∈ Ω let

υε(x) = ln

(

ε2

(ε2 + π|x|2)2
)

,

extended periodically, and let uε = υε −
∫

Ω
υε dx ∈ E.

Lemma 3.2. Iλ(uε) = 2(8π − λ)ln 1
ε +O(1), where |O(1)| ≤ C as ε → 0.

Proof. We estimate

|∇uε|2 = 4|∇ln(ε2 + π|x|2)|2 =
16π2|x|2

(ε2 + π|x|2)2 .

Substituting y = x
ε , we obtain

||uε||2 = 16π2

∫

Ωε

|y|2
(1 + π|y|2)2 dy,
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where Ωε = {y; εy ∈ Ω}. Introducing polar coordinates around 0, the latter equals

||uε||2 = 32π3

∫ ε−1

0

r3 dr

(1 + πr2)2
+O(1) = 32πln

1

ε
+O(1),

where |O(1)| ≤ C for ε → 0.

On the other hand, we have

ln

(∫

Ω

euε dx

)

= ln

(∫

Ω

eυε dx

)

−
∫

Ω

υε dx,

and
∫

Ω

eυε dx =

∫

Ω

ε2 dx

(ε2 + π|x|2)2 =

∫

Ωε

dy

(1 + π|y|2)2 = O(1),

while
∫

Ω

υε dx =

∫

Ω

ln

(

ε2

(ε2 + π|x|2)2
)

dx

= 2lnε− 2

∫

Ω

ln(ε2 + π|x|2) dx

= 2lnε+O(1)

Thus, we obtain, with |O(1)| ≤ C as ε → 0, the estimate

Iλ(uε) =
1

2
||uε||2 − λ ln

(∫

Ω

euε dx

)

= (16π − 2λ)ln
1

ε
+O(1),

as desired. ✷

Remark 2.3 : Note, in particular, that ||uε|| → ∞ as ε → 0.

Fix λ ∈]8π, 4π2[. By Lemma 3.2 there exists ε0 = ε0(λ) > 0 sufficiently small
such that for u0 = uε0 we have

Iλ(u0) < 0 and ||u0|| ≥ 1.

Hence also for any µ ≥ λ we have Iµ(u0) ≤ Iλ(u0) < 0.

Define

P = {γ : [0, 1] → E; γ is continuous , γ(0) = 0, γ(1) = u0}
and for µ ≥ λ let

cµ = inf
γ∈P

max
t∈[0,1]

Iµ
(

γ(t)
)

In view of Remark 1.1, the map µ → cµ, µ ≥ λ is monotone decreasing, hence
differentiable at almost all values µ ∈]λ, 4π2[.

In addition, by Lemma 3.1, there exists a constant c0 > 0 (independent of λ)
such that

cµ ≥
(

1− µ

4π2

)

c0.

Lemma 3.3. Suppose the map : µ → cµ is differentiable at µ > λ. Then cµ defines
a critical value for Iµ. In particular, problem (3)µ admits a nontrivial solution for
almost every µ ∈]λ, 4π2[.
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Proof. Let µ be a point of differentiability of cµ. Consider a monotone decreasing
sequence (µn) such that µn → µ(n → ∞). For n ∈ N and any path γn ∈ P such
that

max
t∈[0,1]

Iµ
(

γn(t)
)

≤ cµ + (µn − µ) (5)

consider any point u = γn(tn) such that Iµn
(u) ≥ cµn

− 2(µn − µ).

Then, letting α = −c′µ + 3 and choosing n0 ∈ N sufficiently large, for n ≥ n0 we
have

cµ − α(µn − µ) ≤ cµn
− 2(µn − µ) ≤ Iµn

(u) ≤ Iµ(u) ≤
≤ max

0≤t≤1
Iµ
(

γn(t)
)

≤ cµ + (µn − µ).
(6)

Note that n0 is independant of the choice of γn. In particular, (6) implies that

0 ≤ Iµ(u)− Iµn
(u)

µn − µ
= ln

(∫

Ω

eu dx

)

≤ α+ 1

and hence that

||u||2 = 2Iµ(u) + 2µ ln

(∫

Ω

eu dx

)

≤ 2cµ + 2(µn − µ) + 2µ(α+ 1) ≤ C1

(7)

for any such point u = γn(tn), any n ≥ n0. To proceed, we need the following
estimates.

Lemma 3.4. i) For any u, υ ∈ E, any µ ≥ 0 there holds

Iµ(u+ υ) ≤ Iµ(u) + 〈I ′µ(u), υ〉+
1

2
||υ||2.

ii) For any C1 ≥ 0 there exists a constant C such that for any µ, ν ∈ R there holds

||I ′µ(u)− I ′ν(u)|| ≤ C|µ− ν|,

uniformly in u ∈ E with ||u||2 ≤ C1.

Proof. i) Expanding to second order, we have

Iµ(u+ υ)− Iµ(u)− 〈I ′µ(u), υ〉 −
1

2
||υ||2 =

= −µ

{

ln

(

∫

Ω
eu+υ dx
∫

Ω
eu dx

)

−
∫

Ω
euυ dx

∫

Ω
eu dx

}

= −µ

∫ 1

0

∫ s′

0

d2f

ds2
(s′′) ds′′ds′,

where f(s) = ln

(
∫

Ω
eu+sυ dx
∫

Ω
eu dx

)

.

Since by Schwarz’ inequality

f ′′(s) =
1

(∫

Ω
eu+sυ dx

)2

{

∫

Ω

eu+sυv2 dx ·
∫

Ω

eu+sυ dx−
(∫

Ω

eu+sυv dx

)2
}

≥ 0,

the desired estimate follows.



6 MICHAEL STRUWE AND GABRIELLA TARANTELLO

ii) For any υ ∈ E with ||υ|| ≤ 1, since
∫

Ω
eu dx ≥ 1, ||υ||2 ≤ 1

2π ||υ|| ≤ 1, we have

〈I ′µ(u), v〉 − 〈I ′ν(u), v〉 =

= (ν − µ)

∫

Ω
euv dx

∫

Ω
eu dx

≤ |µ− ν|
(∫

Ω

e2u dx ·
∫

Ω

v2 dx

)1/2

≤ |µ− ν|
(∫

Ω

e2u dx

)1/2

≤ e
C1
8π |µ− ν|

(∫

Ω

e
4π u2

||u||2 dx

)1/2

,

where we used that

2|u| ≤ 4π
u2

||u||2 +
||u||2
4π

≤ 4π
u2

||u||2 +
C1

4π
.

The claim now follows from the Trudinger-Moser inequality

sup
u∈E

∫

Ω

e
4π u2

||u||2 dx < ∞;

see [9]. ✷

Proceeding with the proof of Lemma 3.3, we can now construct a special (bounded)
Palais-Smale sequence (un) for Iµ at the energy level cµ.

Lemma 3.5. There exists a sequence (un) in E such that ||un||2 ≤ C1, Iµ(un) → cµ
and I ′µ(un) → 0 as n → ∞.

Proof. Otherwise, there exists δ > 0 such that ||I ′µ(u)|| ≥ 2δ for all u ∈ E with

||u||2 ≤ C1 and |Iµ(u)− cµ| < 2δ. We may assume that α(µn − µ) < δ for n ≥ n0.

Choose a function ϕ ∈ C∞(R) such that 0 ≤ ϕ ≤ 1, ϕ(s) = 1 for s ≥
−1, ϕ(s) = 0 for s ≤ −2, and for n ∈ N, u ∈ E let ϕn(u) = ϕ

(

Iµn (u)−cµn

µn−µ

)

.

Choose γn ∈ P satisfying (5) and define

γ̃n(t) = γn(t)−
√
µn − µ · ϕn

(

γn(t)
) I ′µ

(

γn(t)
)

||I ′µ
(

γn(t)
)

|| .

Note that (6) holds true for any u = γn(tn) with Iµn
(u) ≥ cµn

− 2(µn − µ), and
hence (7) is valid for such u, if n ≥ n0. Moreover, (6) also implies |Iµ(u)− cµ| < 2δ
and thus ||I ′µ(u)|| ≥ 2δ.

By (7) and Lemma 3.4 ii), for such u and sufficiently large n ≥ n0 we also obtain

〈I ′µn
(u), I ′µ(u)〉 = ||I ′µ(u)||2 − 〈I ′µ(u)− I ′µn

(u), I ′µ(u)〉

≥ 1

2
||I ′µ(u)||2 −

1

2
||I ′µ(u)− I ′µn

(u)||2 ≥ 1

2
||I ′µ(u)||2 − C|µ− µn|2

≥ 1

4
||I ′µ(u)||2 ≥ δ2.

Thus, by Lemma 3.4 i), for such u, letting ũ = γ̃n(t),

Iµn
(ũ) ≤ Iµn

(u)− 1

4

√
µn − µ · ϕn(u)||I ′µ(u)||+

1

2
|µn − µ|ϕ2

n(u)

≤ Iµn
(u)− δ

4

√
µn − µ · ϕn(u) ≤ Iµn

(u)
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for n ≥ n0, and we can estimate

cµn
≤ max

0≤t≤1
Iµn

(

γ̃n(t)
)

= max
{t;Iµn

(

γn(t)
)

≥cµn−(µn−µ)}

Iµn

(

γ̃n(t)
)

≤ max
0≤t≤1

Iµn

(

γn(t)
)

− δ

4

√
µn − µ

≤ max
0≤t≤1

Iµ
(

γn(t)
)

− δ

4

√
µn − µ

≤ cµ + (µn − µ)− δ

4

√
µn − µ

≤ cµn
+ α(µn − µ)− δ

4

√
µn − µ < cµn

for n ≥ n0, giving the desired contradiction. ✷

Proof of Lemma 3.3 (completed): Let (un) be a sequence as determined in
Lemma 3.5. We may assume that un ⇁ u weakly in E as n → ∞, and eun → eu

in L2. Thus,

o(1) = 〈I ′µ(un), un − u〉 = ||un − u||2 − o(1),

where o(1) → 0 as ε → 0. The claim follows. ✷

By Lemma 3.3 problem (3)λ admits a non-trivial solution for almost every λ ∈
]8π, 4π2[. We now show that this is in fact true for all λ in this range.

4. Compactness

Theorem 1.1 will be a consequence of Lemma 3.3 and the following compactness
result.

Lemma 4.1. Let λn → λ and let un ∈ E be a solution for (3)λn
. If λ 6= 8πm,m ∈

N, then un admits a subsequence which converges smoothly to a solution of (3)λ.

Proof. Our proof relies on a result of Brezis-Merle [1] and its completion given by
Li-Shafrir [8]. ✷

Theorem 4.2. (Brezis-Merle) Let D be a bounded domain in R
2 and {wn} be a

sequence satisying:

−∆wn = Vn(x)e
wn onD

with 0 ≤ Vn(x) ≤ b1 on D. Also suppose that
∫

D
ewn ≤ b2. Then {wn} admits a

subsequence {wnk
}satisfying one of the following:

i) {wnk
} is uniformly locally bounded in D;

ii) for any compact set K ⊂ D, there holds

sup
K

wnk
→ −∞ as k → +∞;

iii) there exists S = {a1, . . . , ap} ⊂ D (blow up set) and a sequence {xi
nk
} ⊂ D

such that, as k → ∞, xi
nk

→ 0, wnk
(xi

nk
) → ∞, i = 1 . . . , p.

Moreover, for any compact set K ⊂ D \ S we have, sup
K

wnk
→ −∞ as k → ∞.
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(Li-Shafrir): In addition, if Vn → V in C0(Ω), then

Vnk
ewnk →

p
∑

i=1

8πmiδx=ai

in the sense of measures, with mi ∈ N and δx=ai
the Dirac distribution supported

in {ai}, i = 1, . . . , p.

Theorem 4.2 implies Lemma 4.1, as follows.

Proof of Lemma 4.1 After translation we may assume that

un(0) = sup
Ω

un.

Let

wn(x) = un(x)− ln

(∫

Ω

eun dx

)

− λn

4
|x|2,

satisfying

−∆wn = −∆un + λn = λn
eun

∫

Ω
eun dx

= λne
λn
4

|x|2ewn

with
∫

Ω

ewn dx ≤ 1.

Thus, the hypotheses of Theorem 4.2 are satisfied for wn with Vn = λne
λn
4

|x|2 ≤
λne

λn , b2 = 1.

By Theorem 4.2, passing to a sub-sequence if necessary, (wn) satisfies (i), (ii)

or (iii). Suppose alternative (iii) of Theorem 4.2 holds. Since Vn → λe
λ
4
|x|2 , this

implies

λn =

∫

Ω

Vne
wn → λ ∈ 8πN asn → ∞.

But λn → λ ∈]8π, 4π2[, showing that (iii) cannot occur.

Consequently, there exists C such that

C ≥ sup
B1/2(0)

wn ≥ sup
B1/2(0)

un − ln

(∫

Ω

eun dx

)

− λn

8
,

and we conclude that

un(0)− ln

(∫

Ω

eun dx

)

= sup
Ω

un − ln

(∫

Ω

eun dx

)

≤ C.

Hence ∆un ∈ L∞(Ω) with

sup
Ω

|∆un| ≤ λn sup
Ω

(

eun

∫

Ω
eun dx

+ 1

)

≤ λn(e
C + 1).

Consequently, there exists a constant C2 such that

||un||C1,α(Ω) ≤ C2 for alln ∈ N

and any fixed α ∈]0, 1[. Therefore, (un) admits a subsequence which converges in
C1(Ω) - hence smoothly - to a solution of (3)λ. ✷

Proof of Theorem 2.1 Fix λ ∈]8π, 4π2[. By Lemmas 3.3 and 4.1 there exists
a sequence (λn) of numbers λn ≤ λ and corresponding solutions un of (3)λn

, u of
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(3)λ such that Iλn
(un) = cλn

, λn → λ, and un → u smoothly as n → ∞. Since
cλ ≤ cλn

for all n, we conclude that

Iλ(u) = lim
n→∞

Iλn
(un) ≥ cλ > 0,

showing that u 6= 0. ✷

5. Nonexistence for small λ > 0

Although we cannot say at this stage whether the “branch” of non-trivial solu-
tions to (3)λ constructed in Theorem 2.1 extends to λ ≤ 8π, we can exclude the
existence of non-trivial solutions to (3)λ for small λ > 0.

Lemma 5.1. There exists a constant C such that for any solution u to (3)λ with
0 ≤ λ < 4π there holds

sup
Ω

|u|+ ||u||2 ≤ C

(

λ+

(

λ

4π − λ

)2
)

.

Proof. Let G be the Green’s function to −∆ on Ω, satisfying
∫

Ω
G(x, y) dy = 0 for

all x. We have

G(x, y) =
1

2π
ln

1

|x− y| + γ(x, y),

where γ, the regular part of G, is smooth on Ω× Ω.

Then for any y ∈ Ω we find

u(y) = −
∫

Ω

∆uG(x, y) dx = λ

∫

Ω
euG(x, y) dx
∫

Ω
eu dx

≤ λ

2π

∫

Ω
ln 1

|x−y|e
u dx

∫

Ω
eu dx

+ λ||γ||L∞ .

(8)

Using the inequality

ab ≤ ea + b(lnb− 1) for b > 0, a ∈ R,

which follows from the equation

sup
a
{ab− ea} = b(lnb− 1),

and letting a = αln
(

1
|x−y|

)

= ln
(

1
|x−y|α

)

, b = eu

α for 1 ≤ α < 2, the first term

may be estimated
∫

Ω
ln 1

|x−y|e
u dx

∫

Ω
eu dx

≤
∫

Ω
1

|x−y|α dx
∫

Ω
eu dx

+

∫

Ω
euu dx

α
∫

Ω
eu dx

+ C ≤ C

2− α
+

∫

Ω
euu dx

α
∫

Ω
eu dx

,

(9)

for any 1 ≤ α < 2, where we also used that
∫

Ω
eu dx ≥ 1. Now observe that

||u||2 = λ

∫

Ω
euu dx

∫

Ω
eu dx

.

Together with the above estimate this implies that

||u||2 ≤ λ sup
Ω

u ≤ Cλ2

2− α
+

λ2

2π

∫

Ω
euu dx

α
∫

Ω
eu dx

=
Cλ2

2− α
+

λ

2πα
||u||2
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Thus for λ < 4π we obtain the estimate

||u||2 ≤ inf
1≤α<2

Cλ2

(2− α)(2πα− λ)
≤ C

(

λ

4π − λ

)2

with a uniform constant C.

From (8) and (9) with α = 1 we then also derive that

sup
Ω

|u| ≤ Cλ+
1

2π
||u||2

≤ Cλ+ C

(

λ

4π − λ

)2

,

as claimed. ✷

Theorem 5.2. There exists Λ > 0 such that for 0 ≤ λ < Λ any solution u ∈ E of
(3)λ vanishes identially.

Proof. By Lemma 5.1 for any solution u of (3)λ for 0 ≤ λ ≤ Λ < 4π we can bound

sup
Ω

|u| ≤ Cλ

with a constant C = C(Λ). Thus, we also have

|eu − 1| ≤ eCλu.

Since
∫

Ω
u dx = 0,

∫

Ω
eu dx ≥ 1, it follows that

||u||2 = λ

∫

Ω
euu dx

∫

Ω
eu dx

= λ

∫

Ω
(eu − 1)u dx
∫

Ω
eu dx

≤ λeCλ

∫

Ω

u2 dx ≤ λeCλ

4π2
||u||2,

and the claim follows. ✷
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