
THE MONOTONICITY TRICK AND APPLICATIONS

MICHAEL STRUWE

Abstract. An abstract version of the author’s “monotonicity trick” is given.

Several applications of this and similar versions of the trick are presented.

1. The abstract result

Recall Rademacher’s theorem from the theory of measurable functions.

Theorem 1.1. Let f : ]0, 1] →]0,∞[ be non-increasing. Then f is almost every-
where differentiable with

−
∫ µ0

µ1

f ′(µ)dµ =

∫ µ0

µ1

|f ′(µ)|dµ ≤ f(µ1)− f(µ0)

for almost every 0 < µ1 < µ0 < 1.

From this we deduce a first version of the “monotonicity trick”.

Theorem 1.2. In addition to the hypothesis in Theorem 1.1 assume that there
holds f ≤ g for some non-increasing g ∈ C1(]0, 1] with g(µ) → ∞ as µ ↓ 0. Then
there is µk ↓ 0 (k →∞) with

−f ′(µk) = |f ′(µk)| ≤ 2|g′(µk)| = −2g′(µk), k ∈ N.

Proof. Else there is µ0 > 0 with

−f ′(µ) = |f ′(µ)| > 2|g′(µ)| = −2g′(µ), for a.e. 0 < µ < µ0,

and for almost every sufficiently small 0 < µ1 < µ0 < 1 it follows that

f(µ1) = f(µ1)− f(µ0) + f(µ0)

≥ −
∫ µ0

µ1

f ′(µ)dµ+ f(µ0) ≥ −2

∫ µ0

µ1

g′(µ)dµ+ f(µ0)

= 2g(µ1)−
(
2g(µ0)− f(µ0)

)
> g(µ1),

since g(µ1)−
(
2g(µ0)− f(µ0)

)
↑ ∞ as µ1 ↓ 0. Contradiction! �

Example 1.3. Let f(µ) = infu∈M Eµ(u), where

Eµ(u) = F (u) +
1

µ
F1(u), u ∈M,

and suppose for every 0 < µ ≤ 1 there is uµ ∈M such that

f(µ) = Eµ(uµ) ≤ 1 + log(1/µ) =: g(µ).
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Then Theorem 1.1 yields µk ↓ 0 (k →∞) with

(1.1) − f ′(µk) = |f ′(µk)| ≤ 2|g′(µk)| = 2

µk
, k ∈ N.

Claim 1.4. Inequality (1.1) implies the bound

F1(uµk)/µk ≤ C, k ∈ N.

Proof. Fix k ∈ N. Then with error o(1)→ 0 as µ ↓ µk there holds

2

µk
≥ −f ′(µk) =

f(µk)− f(µ)

µ− µk
+ o(1) =

Eµk(uµk)− Eµ(uµ)

µ− µk
+ o(1)

≥ Eµk(uµk)− Eµ(uµk)

µ− µk
+ o(1) =

1
µk
− 1

µ

µ− µk
F1(uµk) + o(1)→ F1(uµk)

µ2
k

,

and our claim follows. �

A variation of the preceding example is the following result, obtained by substi-
tuting the function g in the above Example 1.3 with the function

g(µ) = log log(1/µ), 0 < µ ≤ 1.

Example 1.5. Let f(µ) = infu∈M Eµ(u), where

Eµ(u) = F (u) +
1

µ
F1(u), u ∈M,

as above, and suppose for every 0 < µ ≤ 1 there is uµ ∈M such that

f(µ) = Eµ(uµ) ≤ C
with a uniform constant C > 0. Then Theorem 1.1 yields µk ↓ 0 (k →∞) with

(1.2) F1(µk) ≤ µk
log(1/µk)

, k ∈ N.

Other variations are obtained, for instance, by replacing µ ↓ 0 with R = 1/µ ↑ ∞.
The “monotonicity trick” was conceived in the papers [18], [19]. It has found

surprising applications not only in this author’s work but also in the work of numer-
ous other scientists, including Ding Wei-Yue, Louis Jeanjean, Jürgen Jost, Andrea
Malchiodi, Tristan Rivière, and John Toland, who have also introduced further
variants and refinements of the argument; see for instance the papers [7], [9], [10],
[13], or [17].

In this short course we will focus on the following applications. First, we discuss
the analysis of Ginzburg-Landau vortices in 2 space dimensions, following [21];
indeed, the situation encountered in [21] is exactly the situation in our model case
in Example 1.3 above.

Then we show the existence of multivortex solutions in Chern-Simons gauge
theory, following [24].

Surprisingly, the method also may be used to show the existence of steady vortex
rings in an ideal fluid, following [1].

Finally, we demonstrate how the “monotonicity trick” allows to bound the total
absolute curvature of conformal metrics of prescribed Gauss curvature of varying
sign on surfaces of higher genus, following [4].

A further, quite unexpected, application of the trick gives an optimal result for
the existence of periodic solutions of Hamiltonian systems on closed energy surfaces,
following [20]. However, it will not be possible to discuss this here.
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2. Ginzburg-Landau vortices

The Ginzburg-Landau functional originated in the theory of superconductivity.
As a model case we consider the unit disc B = B1(0;R2) as domain. The following
results, however, remain valid when instead of B we consider an arbitrary bounded
and simply connected region Ω ⊂ R2 with smooth boundary ∂Ω ∼= S1, or even for
a multiply connected domain.

For given smooth data g : ∂B = S1 → S1 of degree d ∈ N and any 0 < ε < 1
consider minimizers uε of the Ginzburg-Landau energy

(2.1) Eε(u) =
1

2

∫
B

|∇u|2dx+
1

4ε2

∫
B

(1− |u|2)2dx

subject to the boundary condition

(2.2) u
∣∣
∂B

= g on ∂B.

Let

H1
g (B) = {u ∈ H1(B;R2); u satisfies (2.2)}.

Existence of minimizers uε ∈ H1
g (B) of Eε follows from standard methods. More-

over, for any 0 < ε < 1 the minimizer uε is a smooth solution of the Euler-Lagrange
equation

(2.3) − ε2∆uε = uε(1− |uε|2) in B

and thus satisfies |uε| < 1 in B by the maximum principle, applied to the equation

−ε2∆|uε|2 + 2|∇uε|2 = 2|uε|2(1− |uε|2) in B

obtained from (2.3) by multiplying with 2uε.
In their seminal work [2], [3] on this problem, Bethuel-Brezis-Helein showed

convergence uε → u∗ away from finitely many points to a “harmonic map” u∗ : B →
S1 “with defects” as ε → 0 suitably. A key analytic ingredient is the following
energy bound.

Lemma 2.1. For any smooth g as above there holds

β(ε) := inf
u∈H1

g(B)
Eε(u) ≤ C(1 + log(1/ε)).

Proof. Let ϕ ∈ C∞c (B) satisfy 0 ≤ ϕ ≤ 1, ϕ = 1 on B1/2(0), and for R > 0 let
ϕR(x) = ϕ(x/R) ∈ C∞c (BR(0)). Choose as comparison function the map u given
by

u(x) = g(x/|x|)(1− ϕε(x)), for x ∈ B \ {0}, u(0) = 0.

Compute

|∇u(x)| ≤ C

|x|
(1− ϕε(x)) + C|∇ϕε(x)|;

hence ∫
B

|∇u|2dx ≤ C
∫
B\Bε/2(0)

|x|−2dx+ C

∫
B

|∇ϕε|2dx ≤ C log(1/ε) + C.

Moreover, we have |u(x)| = 1 for |x| > ε, so

(2.4)

∫
B

(1− |u|2)2dx ≤
∫
Bε(0)

dx ≤ πε2.

The claim follows. �
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Remark 2.2. It is immediate from the definition of Eε that the map ε → β(ε) is
non-increasing.

Another corner stone in the analysis of the convergence uε → u∗ is a uniform
bound for the potential energy

Fε(uε) =
1

4ε2

∫
B

(1− |uε|2)2dx.

In their work [2], [3] Bethuel-Brezis-Helein only succeeded in proving this bound on
a convex domain, where a Pohozaev-type identity is available. In conjunction with
Theorem 1.1, however, from Lemma 2.1 we immediately obtain this bound on an
arbitrary domain for the minimizers uεn associated with a suitable sequence εn ↓ 0.
The following result was obtained in [21].

Theorem 2.3. There is C > 0 and a sequence εk ↓ 0 (k →∞) with

(2.5) Fε(uε) ≤ C.

3. Multivortex solutions in Chern-Simons gauge theory

Condensate (or multivortex) solutions in (2+1)-dimensional Chern-Simons gauge
theory are believed to be relevant in several aspects of theoretical physics. By work
of Taubes [26], a particular class of such solutions subject to ’t Hooft periodic
boundary conditions can be obtained by solving an elliptic equation of Liouville-
type on the 2-dimensional torus.

More precisely, let Ω = R
2/Z2 be the flat torus with fundamental cell domain

[− 1
2 ,

1
2 ]× [− 1

2 ,
1
2 ] ⊂ R2. For a given number λ > 0 consider the problem

(3.1) −∆u = λ
( eu∫

Ω
eudx

− 1
)

on Ω,

or, equivalently, solutions of (3.1) on R2 of period 1 in each variable. Note that
u ≡ 0 always is a solution of (3.1) for any λ ∈ R. Here we seek nontrivial solutions.
Also note that for any solution u of (3.1), any c ∈ R, the function u+ c again is a
solution of (3.1). Thus we may normalize solutions by requiring

∫
Ω
u dx = 0.

The problem is variational. Let

H = {u ∈ H1(Ω);

∫
Ω

u dx = 0};

solutions of equation (3.1) then correspond to critical points u ∈ H of the functional

Eλ(u) =
1

2

∫
Ω

|∇u|2dx− λ log(

∫
Ω

eudx), u ∈ H,

which is well-defined and smooth on H thanks to the Trudinger-Moser inequality

(3.2) sup
u∈H

∫
Ω

e
4π u2

‖u‖2
H dx <∞;

see for instance [6] or [14].
When the vortex number N = 1, in [25] it is shown that the asymptotic behavior

of the Taubes-type condensate solutions when the Chern-Simons coupling constant
tends to zero can be described in terms of solutions of (3.1) with λ = 4π. In fact,
in this case, and more generally for any 0 < λ < 8π, with the help of the Trudinger-
Moser inequality one can show that, Eλ is bounded from below, coercive, and weakly
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lower-semicontinuous on H; thus Eλ achieves its infimum β(λ), corresponding to a
solution u of (3.1), which, however, might be the trivial solution u ≡ 0.

For condensate solutions with vortex number N ≥ 2, on the other hand, it is
necessary to insure the existence of non-trivial solutions of (3.1) for λ ≥ 8π. In joint
work [24] with Tarantello, we achieve this when λ is in the range 8π < λ < 4π2.

Theorem 3.1. For every λ ∈]8π, 4π2[ there exists a solution uλ of (3.1) satisfying

Eλ(uλ) ≥
(

1− λ
4π2

)
c0 for some constant c0 > 0 independant of λ.

Remark 3.2. By Jensen’s inequality we have
∫

Ω
eudx ≥ e

∫
Ω
u dx = 1 for all u ∈ H;

hence, the map λ→ Eλ(u) is non-increasing for any u ∈ H.

We will use Remark 3.2 and a variant of the monotonicity trick to show the
assertion made in Theorem 3.1 for almost every λ ∈]8π, 4π2[. A compactness result
based on estimates by Brezis-Merle [5] and Li-Shafrir [12] then yields the complete
result.

For convenience we denote∫
Ω

|∇v|2dx =: ‖v‖2H , v ∈ H.

3.1. Existence of solutions for almost every λ ∈]8π, 4π2[. In a first step we
show that Eλ exhibits a “mountain pass” structure for 8π < λ < 4π2.

Lemma 3.3. If λ < 4π2, then u = 0 is a strict local minimum of Eλ.

Proof. The functional Eλ is smooth. Thus we may use the fact that∫
Ω

|∇v|2dx ≥ 4π2

∫
Ω

v2dx

for any v ∈ H to show that the second variation of Eλ at u = 0 in any direction
v ∈ H can be estimated

(3.3) d2Eλ(0)(v, v) =

∫
Ω

|∇v|2dx− λ
∫

Ω

v2dx ≥
(
1− λ

4π2

)
‖v‖2H .

�

Lemma 3.4. For any λ > 8π there exists u0 ∈ H such that

Eλ(u0) < 0 and ‖u0‖H ≥ 1.

Hence also for any µ ≥ λ we have Eµ(u0) ≤ Eλ(u0) < 0.

Proof. With ϕR defined as in the proof of Lemma 2.1, for ε > 0 and x ∈ Ω let

vε(x) = log
( ε2

(ε2 + |x|2)2

)
ϕ1/2(x),

extended periodically, and let uε = vε− v̄ε, where v̄ε =
∫

Ω
vεdx. Then uε ∈ H with

|∇uε|2 = 4|∇ log(ε2 + |x|2)|2 =
16|x|2

(ε2 + |x|2)2
for |x| ≤ 1/4, |∇uε|2 ≤ C else.

Substituting y = x/ε and introducing polar coordinates around 0, with error
|O(1)| ≤ C for 0 < ε < 1 we obtain

‖uε‖2H = 32π

∫ 1/(4ε)

0

r3dr

(1 + r2)2
+O(1) = 32π log(1/ε) +O(1).
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On the other hand, we have

log
( ∫

Ω

euεdx
)

= log
( ∫

Ω

evεdx
)
− v̄ε

where∫
Ω

evεdx =

∫
B1/4(0)

ε2dx

(ε2 + |x|2)2
+O(1) = 2π

∫ 1/(4ε)

0

r dr

(1 + r2)2
+O(1) = O(1),

while

v̄ε =

∫
Ω

vεdx =

∫
Ω

log
( ε2

(ε2 + |x|2)2

)
ϕ1/2(x)dx

= 2 log ε− 2

∫
Ω

log(ε2 + |x|2)ϕ1/2(x)dx = 2 log ε+O(1).

Thus, we obtain the estimate

Eλ(uε) =
1

2
‖uε‖2H − λ log

( ∫
Ω

euεdx
)

= (16π − 2λ) log(1/ε) +O(1),

and for sufficiently small ε0 > 0 we obtain u0 = uε0 as desired. �

Fix some λ ∈]8π, 4π2[ and let u0 ∈ H as determined in Lemma 3.4. Define

P = {γ : [0, 1]→ H; γ is continuous, γ(0) = 0, γ(1) = u0}

and for µ ≥ λ let

cµ = inf
γ∈P

max
t∈[0,1]

Eµ(γ(t)).

In view of Remark 3.2 the map µ → cµ is monotone decreasing for µ ≥ λ, hence
differentiable at almost all values µ ∈]λ, 4π2[.

In addition, by (3.3), there exists a constant c0 > 0 (independent of λ) such that

cµ ≥
(
1− µ

4π2

)
c0.

Theorem 3.1 thus follows from the next result.

Proposition 3.5. Suppose the map µ → cµ is differentiable at µ > λ. Then cµ
defines a critical value of Eµ. In particular, problem (3.1) admits a nontrivial
solution for almost every µ ∈]8π, 4π2[.

To set up the proof of this key proposition, let µ be a point of differentiability
of cµ. Consider a monotonically decreasing sequence µn ↓ µ as n→∞. For n ∈ N
and any path γn ∈ P such that

(3.4) max
t∈[0,1]

Eµ(γn(t)) ≤ cµ + (µn − µ)

consider any point u = γn(tn) such that

Eµn(u) ≥ cµn − 2(µn − µ).

Then, letting α = −c′µ + 3, C1 = 2(cµ + 1 + µ(α + 1), and choosing n0 ∈ N
sufficiently large, for n ≥ n0 we have

cµ − α(µn − µ) ≤ cµn − 2(µn − µ) ≤ Eµn(u) ≤ Eµ(u)

≤ max
0≤t≤1

Eµ(γn(t)) ≤ cµ + (µn − µ).(3.5)
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Note that n0 is independant of the choice of γn. In particular, (3.5) implies that

0 ≤ Eµ(u)− Eµn(u)

µn − µ
= log

( ∫
Ω

eudx
)
≤ α+ 1

and hence that

‖u‖2H = 2Eµ(u) + 2µ log
( ∫

Ω

eudx
)

≤ 2cµ + 2(µn − µ) + 2µ(α+ 1) ≤ C1

(3.6)

for any such point u = γn(tn), any n ≥ n0.
To proceed, we need the following estimates.

Lemma 3.6. i) For any u, v ∈ H, any µ ≥ 0 there holds

Eµ(u+ v) ≤ Eµ(u) + 〈dEµ(u), v〉+
1

2
‖v‖2H .

ii) For any C1 ≥ 0 there exists a constant C such that for any µ, ν ∈ R there holds

‖dEµ(u)− dEν(u)‖H∗ ≤ C|µ− ν|,
uniformly in u ∈ H with ‖u‖2H ≤ C1.

Proof. i) Expanding to second order, we find

Eµ(u+ v)− Eµ(u)− 〈dEµ(u), v〉 − 1

2
‖v‖2H =

= −µ
(

log
(∫

Ω
eu+vdx∫

Ω
eudx

)
−
∫

Ω
euv dx∫

Ω
eudx

)
= −µ

∫ 1

0

∫ s′

0

d2f

ds2
(s′′) ds′′ ds′,

(3.7)

where f(s) = log
( ∫

Ω
eu+svdx/

∫
Ω
eudx

)
. Since by Schwarz’ inequality we have

d2f

ds2
(s) =

1( ∫
Ω
eu+svdx

)2(∫
Ω

eu+svv2dx ·
∫

Ω

eu+svdx−
( ∫

Ω

eu+svv dx
)2) ≥ 0,

the desired estimate follows.
ii) For any v ∈ H with ‖v‖H ≤ 1, observing that∫

Ω

eudx ≥ 1, ‖v‖L2 ≤ 1

2π
‖v‖H ≤ 1,

we have

〈dEµ(u), v〉 − 〈dEν(u), v〉

= (ν − µ)

∫
Ω
euv dx∫

Ω
eudx

≤ |µ− ν|
( ∫

Ω

e2udx ·
∫

Ω

v2dx
)1/2

≤ |µ− ν|
( ∫

Ω

e2udx
)1/2 ≤ eC1

8π |µ− ν|
( ∫

Ω

e
4π u2

‖u‖2
H dx

)1/2
,

where we used that

2|u| ≤ 4π
u2

‖u‖2H
+
‖u‖2H

4π
≤ 4π

u2

‖u‖2H
+
C1

4π
.

The claim now follows from the Trudinger-Moser inequality (3.2). �

Continuing with the proof of Proposition 3.5, we now construct a special (bounded)
Palais-Smale sequence (un) for Eµ at the energy level cµ. Set C1 = 2(cµ+1+µ(α+1)
with α = −c′µ + 3 as before (3.5) in the first part of the proof above.
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Lemma 3.7. There exists a sequence (un) in H such that Eµ(un)→ cµ, dEµ(un)→
0 in H∗ as n→∞, and such that, in addition, ‖un‖2H ≤ C1 for all n ∈ N.

Proof. Otherwise, there exists δ > 0 such that ‖dEµ(u)‖H∗ ≥ 2δ for all u ∈ H with
‖u‖2H ≤ C1 and |Eµ(u) − cµ| < 2δ. With µn ↓ µ as above, we may assume that
α(µn − µ) < δ for n ≥ n0.

Choose a function ψ ∈ C∞(R) such that 0 ≤ ψ ≤ 1, ψ(s) = 1 for s ≥ −1,

ψ(s) = 0 for s ≤ −2, and for n ∈ N, u ∈ H let ψn(u) = ψ
(Eµn (u)−cµn

µn−µ
)
.

Choose γn ∈ P satisfying (3.4) and define

γ̃n(t) = γn(t)−
√
µn − µ · ψn(γn(t))

dEµ(γn(t)

‖dEµ(γn(t))‖H∗
,

where we identify dEµ(u) with the gradient vector ∇Eµ(u) ∈ H satisfying

dEµ(u)(∇Eµ(u)) = ‖dEµ(γn(t))‖2H∗ = ‖∇Eµ(γn(t))‖2H .

Note that (3.5) holds true for any u = γn(tn) with Eµn(u) ≥ cµn − 2(µn − µ),
and hence (3.6) is valid for such u if n ≥ n0. Moreover, (3.5) also implies that we
have |Eµ(u)− cµ| < 2δ and thus by our assumption ‖dEµ(u)‖H∗ ≥ 2δ for such u.

By (3.6) and Lemma 3.6.ii), for such u and sufficiently large n ≥ n0 we also
obtain

〈dEµn(u), dEµ(u)〉 = ‖dEµ(u)‖2H∗ − 〈dEµ(u)− dEµn(u), dEµ(u)〉

≥ 1

2
‖dEµ(u)‖2H∗ −

1

2
‖dEµ(u)− dEµn(u)‖2H∗

≥ 1

2
‖dEµ(u)‖2H∗ − C|µ− µn|2 ≥

1

4
‖dEµ(u)‖2H∗ ≥ δ2.

Thus, by Lemma 3.6.i), for such u = γn(tn), letting ũ = γ̃n(t), for n ≥ n0 we have

Eµn(ũ) ≤ Eµn(u)− 1

4

√
µn − µ · ψn(u)‖dEµ(u)‖H∗ +

1

2
|µn − µ|ψ2

n(u)

≤ Eµn(u)− δ

4

√
µn − µ · ψn(u) ≤ Eµn(u),

and we can estimate

cµn ≤ max
0≤t≤1

Eµn(γ̃n(t)) = max
{t; Eµn (γn(t))≥cµn−(µn−µ)}

Eµn(γ̃n(t))

≤ max
0≤t≤1

Eµn(γn(t))− δ

4

√
µn − µ ≤ max

0≤t≤1
Eµ(γn(t))− δ

4

√
µn − µ

≤ cµ + (µn − µ)− δ

4

√
µn − µ

≤ cµn + α(µn − µ)− δ

4

√
µn − µ < cµn

for n ≥ n0, giving the desired contradiction. �

Proof of Proposition 3.5. Let (un) be a sequence as determined in Lemma 3.7. We
may assume that un ⇁ u weakly in H as n→∞, and eun → eu in L2. Thus, with
error o(1)→ 0 as n→∞ we have

o(1) = 〈dEµ(un), un − u〉 = ‖un − u‖2H − o(1).

The claim follows. �
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4. Steady vortex rings in an ideal fluid

Introducing a stream function Ψ, axisymmetric vortex rings in an ideal fluid may
be obtained from a cylindrically symmetric solution u = u(r, z) of the nonlinear
elliptic equation

(4.1) −∆u = g(r2u− r2 − k) on R5

with boundary condition

(4.2) u(x)→ 0 as |x| → ∞.
Here, for x = (xi)1≤i≤5 = (x′, x5) we set r = |x′|, z = x5; moreover, k ≥ 0 is a flux
constant and g : R→ [0,∞[ satisfies g(s) = 0 for s < 0 and is bounded, continuous,
non-decreasing, and positive ]0,∞[. A solution u to (4.1) induces an axisymmetric
vortex solution of the Euler equations with stream function

Ψ(X) = r2u(r, z)−r2−k, where now X = (X1, . . . , X3) ∈ R3, r2 = X2
1 +X2

2 , z = X3,

and with vortex core

A = {X ∈ R3; Ψ(X) > 0} = {(r, z); u(r, z) > 1 + k/r2};
see [1].

From [1] we then have the following result.

Theorem 4.1. For any g as above with g(0) ≥ 0 there exists a solution u > 0 of
(4.1), (4.2) with non-empty vortex core.

The proof is carried out by solving an approximate boundary value problem,
and subtly using monotonicity to extract a limit. For simplicity throughout the
following we will assume that g(0) = 0 and that g is smooth on all of R.

4.1. The approximate problem. For R > 0 let BR = {x ∈ R5; |x| < R}. It is
natural to approximate problem (4.1), (4.2) with the boundary value problem

(4.3) −∆u = g(r2u− r2 − k) on BR, u = 0 on ∂BR.

Problem (4.3) has a variational structure. Let

G(r, u) =

∫ u

0

g(r2s− r2 − k)ds

be a primitive of g and for any R > 0 define

ER(u) =
1

2

∫
BR

|∇u|2dx−
∫
BR

G(r, u)dx, u ∈ H1
0 (BR).

In fact, since we are looking for cylindrically symmetric functions u = u(r, z) we
restrict our attention to functions in

H = H(R) = {u ∈ H1
0 (BR); u = u(r, z)}

For convenience, denote

‖u‖2H =

∫
BR

|∇u|2dx, JR(u) =

∫
BR

G(r, u)dx

so that

ER(u) =
1

2
‖u‖2H − JR(u), u ∈ H(R).

Extending any u ∈ H(R) by setting u = 0 outside BR, for any R′ ≥ R we also have
u ∈ H(R′) with ER′(u) = ER(u).
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Recall that we assume 0 ≤ g ∈ C∞(R) is non-decreasing and bounded with

g(s) = 0 < g(t) for any s ≤ 0 < t.

Note the following elementary facts.

Lemma 4.2. Suppose g satisfies the above. Then there are constants ρ > 0, α > 0
independent of R > 0 such that the following holds.

i) For any R > 0 the functional ER is bounded from below, weakly lower semi-
continuous and coercive on H = H(R);

ii) for any R > 0 the function u ≡ 0 is a strict relative minimizer of ER on
H = H(R), and we have

ER(u) ≥ α for any u ∈ H with ‖u‖H = ρ ;

iii) there is R0 > 0 and u1 ∈ H(R0) such that for any R ≥ R0 we have ER(u1) =
ER0

(u1) < 0. Moreover,

inf{ER(u); u ∈ H(R)} → −∞ as R→∞.

Proof. i) This is immediate from the fact that g by assumption is smooth and
bounded.

ii) Since g is bounded and non-decreasing in u, and since g(r, u) = 0 whenever

r2u < r2 +k, by Sobolev’s embedding H(R) ⊂ Ḣ1(R5) ↪→ L10/3(R5) we can bound∫
BR

G(r, u)dx ≤
∫
BR

g(r2u− r2 − k)u dx ≤ ‖g‖L∞
∫
{x∈BR;u(x)≥1}

u dx

≤ ‖g‖L∞
∫
BR

|u|10/3dx ≤ C‖u‖10/3
H .

Claim ii) follows.
iii) Fix a function 0 ≤ ψ ∈ H(1) with J1(ψ) > 0. For any R > 1, scaling

ψR(x) = ψ(x/R) ∈ H(R), we have

(4.4) ‖ψR‖2H(R) = R3‖ψ‖2H(1).

Moreover, by monotonicity of g, upon changing variables y = x/R = (y′, y5),
s = |y′| = r/R, for any R ≥ 1 we obtain

JR(ψR) =

∫
BR

∫ ψR(x)

0

g(r2(t− 1)− k)dt dx

≥
∫
BR

∫ ψ(x/R)

0

g((
r

R
)2(t− 1)− k)dt dx

=

∫
BR

G(
r

R
, ψ(

r

R
))dx = R5J1(ψ1).

(4.5)

Hence as R→∞ we find

ER(ψR) ≤ R3

2
‖ψ‖2H(1) −R

5J1(ψ1)→ −∞,

which gives iii). �

Since we assumed g to be smooth, the functional ER for any R > 0 is Fréchet
differentiable and we have the following equivalence.

Lemma 4.3. A function u ∈ H(R)\{0} is a critical point of ER if and only if u is
a positive solution of (4.3) with non-empty vortex core {(r, z); u(r, z) > 1 + k/r2}.



THE MONOTONICITY TRICK 11

Proof. We have dER(u) = 0 if and only if there holds

0 = 〈dER(u), v〉 =

∫
BR

(∇u∇v − g(r2u− r2 − k)v)dx

= −
∫
BR

(
∆u+ g(r2u− r2 − k)

)
v dx for any v ∈ H(R).

But for u ∈ H(R) also ∆u+ g(r2u− r2− k) is cylindrically symmetric; so u in fact
weakly solves (4.3).

Since g ≥ 0 is smooth and bounded, standard elliptic regularity results then
give u ∈ C2(BR). Thus, either g(r2u − r2 − k) ≡ 0 so that u ≡ 0, or we have
g(r2u− r2 − k) 6≡ 0 and u > 0 by the maximum principle, and conversely. �

Moreover, ER satisfies the Palais-Smale condition.

Lemma 4.4. Suppose that (uk)k∈N ⊂ H(R) satisfies

|ER(uk)| ≤ C, ‖dER(uk)‖H∗ → 0 as k →∞.
Then a subsequence uk → u in H, where dER(u) = 0.

Proof. This follows directly from the fact that ER is coercive on H(R), observing
that dJR is compact. �

Proposition 4.5. Suppose g is as above. Then for for any R ≥ R0, where R0 >
0 is as in Lemma 4.2.iii), there exist at least two distinct positive, cylindrically
symmetric solution uR, vR ∈ H(R) of (4.3), satisfying

ER(vR) = inf{ER(v); v ∈ H(R)} < 0,

ER(uR) = inf
p∈Γ(R)

sup
0≤t≤1

ER(p(t)) > 0,

where
Γ(R) = {p ∈ C0([0, 1];H(R)); p(0) = 0, p(1) = u1}.

Proof. By Lemma 4.2.i) the functional ER attains a minimum at some point vR ∈
H(R), and ER(vR) < 0 for R ≥ R0 by Lemma 4.2.iii).

In view of Lemma 4.4, and taking account of Lemma 4.2.ii) and iii), we can
apply the “mountain pass” theorem to obtain a further critical point uR ∈ H(R)
of ER, characterized as in the statement of the theorem. By Lemma 4.2.ii) we have
ER(uR) > 0; thus uR 6= 0, and in fact uR > 0 by Lemma 4.3. �

4.2. Passing to the limit. In view of the fact that

ER(vR) = inf{ER(v); v ∈ H(R)} → −∞ as R→∞
by Lemma 4.2.iii) we cannot hope to extract a convergent subsequence from (vR)R≥1.
However, we will see that with the help of monotonicity we can show boundedness
of uR for suitable R→∞.

For this we need to take a closer look at how we constructed uR. Recall that
from Proposition 4.5 for any R ≥ R0 we have ER(uR) = γ(R), where

γ(R) = inf
p∈Γ(R)

max{ER(p(t)); 0 ≤ t ≤ 1},

Γ(R) = {p ∈ C0([0, 1];H(R)); p(0) = 0, p(1) = u1}.

Also recall that for R0 ≤ R < R′ < ∞ we may regard H(R) ⊂ H(R′), and hence
also Γ(R) ⊂ Γ(R′). Thus, we have γ(R) ≥ γ(R′) for any such R0 ≤ R < R′ < ∞,
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and the function R 7→ γ(R) is non-increasing and therefore differentiable at almost
every point R <∞ with∫ ∞

R0

∣∣ d
dR

γ(R)
∣∣dR ≤ γ(R0)− lim inf

R→∞
γ(R) ≤ γ(R0) <∞.

As a consequence, we may conclude that for suitable Rk →∞ there holds

Rk|
d

dR
γ(Rk)

∣∣→ 0 as k →∞.

For 0 < s ∈ R and u ∈ H(R) by slight abuse of notation set us(x) = u(x/s) ∈
H(sR) (not to be confused with the mini-max solution uR of (4.3)). Clearly, the
map H(R) 3 u 7→ us = u(·/s) ∈ H(sR) defined in this way is an isomorphism.

Note that for R0 < R <∞ and s > 0 sufficiently close to 1 we have

ER(u1(x/σ)) < 0 for all s ≤ σ ≤ 1, if s ≤ 1, or for all 1 ≤ σ ≤ s, else.

Hence for such s < 1 any path p ∈ Γ(R) after scaling may be completed to a path
q =: ps ∈ Γ(sR) given by q(t) = (p(t/s))s for 0 ≤ t ≤ s and q(t) = (u1)t for
s ≤ t ≤ 1, and there holds

(4.6) γ(sR) = inf
p∈Γ(R)

max{ER(ps(t)); 0 ≤ t ≤ 1}.

We use this to prove the following result.

Proposition 4.6. Suppose that the function R 7→ γ(R) is differentiable at some
R > R0. Then there is a solution u = uR of (4.3) with ER(uR) = γ(R) and
satisfying

‖uR‖2H(R) ≤ 6(γ(R) +R| d
dR

γ(R)
∣∣+ 3).

Proof. i) By (4.6) for any ε > 0 and any s < 1 sufficiently close to 1 there exists
p ∈ Γ(R) such that

(4.7) max
0≤t≤1

EsR(ps(t)) ≤ γ(sR) + ε(1− s5).

Let u = p(t) be any function on p satisfying

(4.8) ER(u) ≥ γ(R)− ε(1− s5).

Then together with (4.7) we have

(4.9) EsR(us)− ER(u) ≤ γ(sR)− γ(R) + 2ε(1− s5).

But with t = 1/s > 1, observing that u = (us)t, from (4.4) and (4.5) we obtain

‖us‖2H(sR) = s3‖u‖2H(R), JsR(us) ≤ s5JR(u)

so that

s5

1− s5
(‖us‖2H(sR) − ‖u‖

2
H(R)) =

s5 − s2

1− s5
‖us‖2H(sR),

s5

1− s5
(JR(u)− (JsR(us)) ≥ JsR(us)

and thus

s5EsR(us)− ER(u)

1− s5
≥ JsR(us)−

3

10
‖us‖2H(sR),



THE MONOTONICITY TRICK 13

where we note that

s5 − s2

1− s5
= − s2 + s3 + s4

1 + s+ s2 + s3 + s4
> −3

5

for 0 < s < 1. For any p ∈ Γ(R), any u = p(t) satisfying (4.7) and (4.8) thus we
obtain

1

5
‖us‖2H(sR) = EsR(us) + JsR(us)−

3

10
‖us‖2H(sR)

≤ EsR(us) + s5EsR(us)− ER(u)

1− s5
≤ γ(sR) + s5 γ(sR)− γ(R)

1− s5
+ ε(1 + s5).

Now for any s < 1 sufficiently close to 1 we can bound

γ(sR) + s5 γ(sR)− γ(R)

1− s5
= γ(R) +

γ(sR)− γ(R)

1− s5
≤ γ(R) +

∣∣Rdγ(R)

dR

∣∣+ ε;

therefore for any such s and u = p(t) as above we have

s3

5
‖u‖2H(R) =

1

5
‖us‖2H(sR) ≤ γ(R) +

∣∣Rdγ(R)

dR

∣∣+ 3ε.

In particular, for ε = 1 and s < 1 sufficiently close to 1 and any such u we find the
bound

(4.10) ‖u‖2H ≤ 6
(
γ(R) +

∣∣Rdγ(R)

dR

∣∣+ 3
)

=: c20.

ii) Next we show that for ε = 1 we can construct a Palais-Smale sequence of
functions uk in H = H(R) with ER(uk)→ γ(R) and dER(uk)→ 0 as k →∞, and
satisfying the bound ‖uk‖H < c0 + 2 for all k ∈ N.

Arguing by contradiction, suppose that there is δ > 0 such that for any u in the
set

Uδ = {u ∈ H(R); ‖u‖H < c0 + 2, |ER(u)− γ(R)| < 2δ}
there holds

‖dER(u)‖H∗ > 4δ.

Also let

U∗δ = {u ∈ H(R); ‖u‖H < c0 + 1, |ER(u)− γ(R)| < δ}.
Let ψ1 ∈ C0(H) be a Lipschitz continuous cut-off function satisfying 0 ≤ ψ1 ≤ 1,

ψ1(u) = 1 for u ∈ H with ‖u‖H < c0 + 1, ψ1(u) = 0, if ‖u‖H ≥ c0 + 2. Also let
ψ2(u) = ψ(ER(u)− γ(R)), where ψ ∈ C∞c (R) with 0 ≤ ψ ≤ 1 satisfies ψ(s) = 1 for
|s| < δ, ψ(s) = 0 for |s| > 2δ, and set

ψ0(u) = ψ1(u)ψ2(u).

Finally, let v = v(u) be a Lipschitz continuous pseudo-gradient vector field for
ER in Uδ with

‖v‖H < 1, 〈dER(u), v(u)〉 > 1

2
‖dER(u)‖H∗ > 2δ, u ∈ Uδ,

as constructed for instance in [15], [16], or [22], Section II.3, and let Φ ∈ C0(H ×
[0, 1];H) be the corresponding flow with

d

dt
Φ(u, t) = ψ0(Φ(u, t))v(Φ(u, t)), Φ(u, 0) = u.
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Then for any u ∈ H the map t 7→ ER(Φ(u, t)) is non-increasing, and

(4.11)
d

dt
ER(Φ(u, t)) = 〈dER(Φ(u, t)), v(Φ(u, t))〉 < −2δ if Φ(u, t) ∈ U∗δ .

Note that for 0 ≤ t ≤ 1 and any u we have ‖Φ(u, t)−u‖H < 1. In particular, given
any u with ‖u‖H < c0 and ER(u) ≤ γ(R) + δ, for any 0 ≤ t ≤ 1 either there holds
Φ(u, t) ∈ U∗δ , or ER(Φ(u, t)) ≤ γ(R)− δ. Thus, by (4.11) in any case when setting
Ψ(u) = Φ(u, 1) for such u we find

(4.12) ER(Ψ(u)) ≤ γ(R)− δ.
Now choose p ∈ Γ(R) satisfying (4.7) with ε = 1 and consider any u = p(t)

satisfying (4.8) and thus, by (4.10), also satisfying ‖u‖H < c0 if we choose s < 1
sufficiently close to 1. Note that in view of (4.4), (4.5) for any such u and s we
have

EsR(us) =
1

2
‖us‖2H(sR) − JsR(us) ≥

s3

2
‖u‖2H(R) − s

5JR(u)

= ER(u)− 1− s3

2
‖u‖2H(R) + (1− s5)JR(u) ≥ ER(u)− C0(1− s5).

(4.13)

with a uniform constant C0 > 0. Thus by (4.7) for such u there also holds ER(u) <
γ(R) + δ and hence |ER(u)− γ(R)| < δ by (4.8). But then for p̃ = Ψ ◦ p ∈ Γ(R) by
(4.11) we have

sup
0≤t≤1

ER(p̃(t)) ≤ γ(R)− δ,

contradicting the definition of γ(R).
iii) To complete the proof of the proposition it now suffices to recall that the

functional ER satisfies the Palais-Smale condition. Thus, a subsequence uk → u ∈
H, where u is a solution of (4.3) with ‖u‖H < c0. �

Proof of Theorem 4.1. For suitable R = Rk → ∞ we have γ(Rk) → γ0 < ∞,
Rk

d
dRγ(Rk) → 0 as k → ∞ and there holds the uniform bound ‖uk‖H < c1

for uk = uRk . Thus, there exists a sub-sequence k → ∞ such that uk ⇁ u in

Ḣ1(R5) ↪→ L10/3(R5) and almost everywhere. It is then straightforward to pass to
the limit k →∞ in the equation

0 =

∫
BR

(∇uk∇v − g(r2uk − r2 − k)v)dx for any v ∈ C∞c (R5)

for R = Rk to see that u solves (4.1), (4.2) in the sense of distributions. By elliptic
regularity u then also solves (4.1) classically. �

5. Conformal metrics of prescribed Gauss curvature

Finally, following [4], we use the “monotonicity trick” to find “large” conformal
metrics of prescribed Gauss curvature and with bounded total curvature on surfaces
of higher genus.

Let (M, g0) be a closed Riemann surface (M, g0) of genus γ(M) > 1. By the
uniformization theorem we may assume that g0 has constant Gauss curvature Kg0 ≡
k0. Finally, we normalize the volume of (M, g0) to unity.

Recall that the Gauss curvature of a conformal metric g = e2ug0 on M is given
by the equation

Kg = e−2u(−∆g0
u+ k0) .
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For a given function f on M the question of finding a conformal metric of prescribed
Gauss curvature f then amounts to solving the equation

(5.1) −∆g0
u+ k0 = fe2u on M.

The problem is variational; solutions u of (5.1) can be characterized as critical
points of the functional

Ef (u) =
1

2

∫
M

(
|∇u|2g0

+ 2k0u− fe2u
)
dµg0

, u ∈ H1(M, g0) .

Note that Ef is strictly convex and coercive on H1(M, g0) when f ≤ 0 does not
vanish identically.

Let f0 be a smooth, non-constant function with maxp∈M f0(p) = 0, all of whose
maximum points are non-degenerate. By the above the functional Ef0

admits a
unique critical point u0 ∈ H1(M, g0), which is a strict absolute minimizer of Ef0 .

In addition, the second variation d2Ef0
(u0) of Ef0

at u0 is non-degenerate; in
fact, the following general result was shown in [4].

Theorem 5.1. Let (M, g0) be closed with γ(M) > 1, and suppose that for some
f ∈ C∞(M) the functional Ef admits a relative minimizer uf ∈ H1(M, g0). Then
uf is a non-degenerate critical point of Ef in the sense that with a constant c0 > 0
there holds

(5.2) d2Ef (uf )(h, h) =

∫
M

(
|∇h|2g0

− 2fe2ufh2
)
dµg0

≥ c0||h||2H1

for all h ∈ H1(M, g0).

With the help of the implicit function theorem, from Theorem 5.1 we conclude
that also for certain sign-changing functions f the corresponding functional Ef
admits a relative minimizer uf . In particular, for any given smooth, non-constant
function f0 ≤ 0 as above, letting fλ = f0 + λ for λ ∈ R, from Theorem 5.1 we
deduce the existence of relative minimizers uλ of Eλ = Efλ for sufficiently small
λ > 0.

Observe that for functions f with maxM f > 0 the functional Ef is no longer
bounded from below, as can be seen by choosing a comparison function v ≥ 0
supported in the set where f > 0 and looking at Ef (sv) for large s > 0. Therefore,
and in view of Theorem 5.1, whenever Ef admits a relative minimizer there is a
“mountain pass” geometry and one may expect the existence of a further critical
point of saddle-type.

In fact, in the case of the above functionals Eλ, the existence of a further critical
point uλ 6= uλ of Eλ for sufficiently small λ > 0 was shown by Ding-Liu [8].
Improving the Ding-Liu result, in [4] we use the “monotonicity trick” to find a
sequence λn ↓ 0 with corresponding saddle-type (“large”) solutions un = uλn of
(5.1) inducing conformal metrics gn = e2ung0 of uniformly bounded total curvature.

Theorem 5.2. For any smooth, non-constant function f0 ≤ 0 = maxp∈M f0(p)
consider the family of functions fλ = f0 + λ, λ ∈ R, and the associated family
of functionals Eλ(u) = Efλ(u) on H1(M, g0). There exists a constant C > 0, a
sequence λn ↓ 0, and corresponding solutions un = uλn 6= uλn of (5.1) of “mountain
pass” type inducing conformal metrics gn = e2ung0 of total curvature

(5.3)

∫
M

|Kgn |dµgn ≤
∫
M

(|f0|+ λn)e2undµg0
≤ C <∞,
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uniformly in n ∈ N.

The bound (5.3) allows to analyze the blow-up limit of the “large” solutions
un = uλn . In [4] a first characterization of blow-up limits near a non-degenerate
maximum point of the function f0 was achieved; in fact, with a refined analysis in
[23] it was shown that any blow-up limit in this case is spherical. Very recent work
by Mingxiang Li [11] shows that this characterization of blow-up limits also holds
true in the degenerate case.

5.1. Existence of saddle-type critical point. Given f0 as above recall that
there is λ0 > 0 such that for any λ ∈ Λ0 =]0, λ0] the functional Eλ admits a strict
relative minimizer uλ ∈ H1(M, g0), depending smoothly on λ. In particular, as
λ ↓ 0 we have smooth convergence uλ → u0, the unique solution of (5.1) for f = f0.
Hence, after replacing λ0 with a smaller number λ0 > 0, if necessary, we can find
ρ > 0 such that there holds

Eλ(uλ) = inf
||u−u0||H1<ρ

Eλ(u) ≤ sup
µ,ν∈Λ0

Eµ(uν)

< β0 := inf
µ∈Λ0; ρ/2<||u−u0||H1<ρ

Eµ(u),
(5.4)

uniformly for all λ ∈ Λ0. Clearly, we may assume that λ0 < 1. Fix some number
λ ∈ Λ0. Recalling that for λ > 0 the functional Eλ is unbounded from below, we
can also fix a function vλ ∈ H1(M, g0) such that

Eλ(vλ) < Eλ(uλ)

and hence

(5.5) cλ = inf
p∈P

max
t∈[0,1]

Eλ(p(t)) ≥ β0 > Eλ(uλ),

where

(5.6) P = {p ∈ C
(
[0, 1];H1(M, g0)

)
: p(0) = u0, p(1) = vλ}.

Note that since uλ → u0 for λ ↓ 0, for sufficiently small λ0 > 0 we can fix the initial
point of comparison paths p ∈ P to be u0 instead of uλ for all 0 < λ < λ0.

Next we show that we can choose vλ depending contiuously on λ with an explicit
estimate of the mountain-pass energy level cλ associated with P .

Lemma 5.3. For any K > 4π there is λK ∈]0, λ0/2] such that for any 0 < λ < λK
there is vλ ∈ H1(M, g0) so that choosing vµ = vλ for every µ ∈ [λ, 2λ] there holds

Eµ(vµ) = Eµ(vλ) < Eµ(uµ)

and with P as in (5.6) the number cµ is unambiguously defined (that is, cµ is inde-
pendent of λ such that µ ∈ [λ, 2λ]); moreover, we obtain the bound cµ ≤ K log(2/µ).

Proof. Let p0 ∈M be such that f0(p0) = 0. Choose local conformal coordinates x
near p0 = 0 such that e2u0g0 = e2v0gR2 for some smooth function v0 with v0(0) = 0.
Letting A = 1

2Hessf (p0), for a suitable constant L > 0 we have

f0(x) = (Ax, x) +O(|x|3) ≥ −λ/2 on B√λ/L(0),

and fλ ≥ λ/2 on B√λ/L(0).
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Set wλ(x) = zλ(Lx/
√
λ) for |x| ≤

√
λ/L, where zλ ∈ H1

0 (B1(0)) is given by
zλ(x) = log(1/|x|) for λ ≤ |x| ≤ 1 and zλ(x) = log(1/λ) for |x| ≤ λ. Extending
wλ(x) = 0 outside B√λ/L(0) we have

‖∇wλ‖2L2 = ‖∇zλ‖2L2 = 2π log(1/λ).

Moreover, for sufficiently small λ > 0 and any s > 0 we obtain∫
M

fλe2(u0+swλ)dµg0 ≥
λ

2

∫
B√λ/L(0)

e2(u0+swλ)dµg0 − ‖f0‖L∞
∫
M

e2u0dµg0

≥ λ

4

∫
B√λ/L(0)

e2swλdx− C‖f0‖L∞ ,

where after substituting y = Lx/
√
λ we have

λ

∫
B√λ/L(0)

e2swλdx =

∫
B1(0)

e2(szλ+log(λ/L))dy

≥
∫
Bλ(0)

e2(szλ+log(λ/L))dx = πL−2λ4−2s.

Given any K > 4π, we let K1 = 1
2 (K + 4π), δ = K1−4π

4π and use Young’s

inequality 2ab ≤ δa2 + b2/δ for a, b > 0 to bound

‖∇(u0 + swλ)‖2L2 ≤ (1 + δ)s2‖∇wλ‖2L2 + (1 +
1

δ
)‖∇u0‖2L2 =

K1s
2

4π
‖∇wλ‖2L2 + C,

where C = C(u0,K) > 0. Since k0 < 0, wλ ≥ 0, for any s > 0 we also have∫
M

k0(u0 + swλ)dµg0 ≤ k0

∫
M

u0dµg0 .

Thus, with a constant C0 = C0(u0, f0,K) > 0 for any s > 0 we find

Eλ(u0 + swλ) ≤ K1
s2

4
log(1/λ)− π

8L2
λ4−2s + C0.

In particular, for any 0 < λ < 1 we have Eλ(u0 + swλ) → −∞ as s → ∞ and
we may fix some sλ > 2 with vλ = u0 + sλwλ satisfying

Eλ(vλ) < inf
µ∈Λ0

Eµ(uµ)

to obtain

cλ ≤ sup
s>0

Eλ(u0 + swλ) ≤ sup
s>0

(
K1

s2

4
log(1/λ)− π

8L2
λ4−2s + C0

)
.

For any 0 < λ < 1 the supremum in the latter quantity is achieved for some
s = s(λ) > 2, with s(λ) → 2 as λ ↓ 0. Thus, for all sufficiently small λ > 0 there
results

cλ ≤ K log(1/λ),

as desired.
Since Eµ(vλ) ≤ Eλ(vλ) for µ > λ, the same comparison function vλ can be used

for every µ ∈ Λ :=]λ, 2λ[⊂ Λ0, and for such µ by choice of vλ we obtain the bound

(5.7) Eµ(vλ) < Eµ(uµ) ≤ sup
ν∈Λ

Eµ(uν) < β0 ≤ cµ ≤ K log(1/λ) ≤ K log(2/µ),
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where β0 and cµ for µ ∈ Λ are as defined in (5.4), (5.5). Moreover, since vλ by
construction depends continuously on λ with Eλ(vλ) < infµ∈Λ0 Eµ(uµ) the number
cµ is defined independently of λ such that λ < µ < 2λ. The claim follows. �

Note that there holds

(5.8) Eµ(u)− Eν(u) = −µ− ν
2

∫
M

e2u dµg0

for every u ∈ H1(M, g0) and every µ, ν ∈ R. Given 0 < λ < λ0/2, with Λ =]λ, 2λ[
as above it follows that the function

Λ 3 µ 7→ cµ

is non-increasing in µ, and therefore differentiable at almost every µ ∈ Λ.
We now have the following result.

Proposition 5.4. Suppose the map Λ 3 µ 7→ cµ is differentiable at some µ > λ.
Then there exists a sequence (pn)n∈N in P and a corresponding sequence of points
un = pn(tn) ∈ H1(M, g0), n ∈ N, such that

(5.9) Eµ(un)→ cµ, sup
0≤t≤1

Eµ(pn(t))→ cµ, dEµ(un)→ 0 in H−1 as n→∞,

and with (un) satisfying, in addition, the “entropy bound”

(5.10)
1

2

∫
M

e2un dµg0 =
∣∣ d
dµ
Eµ(un)

∣∣ ≤ |c′µ|+ 3, uniformly in n.

For the proof of Proposition 5.4 we note the following lemma.

Lemma 5.5. For any m > 0 there exists a constant C = C(M, g0, f0,m) such that
for every u ∈ H1(M, g0) satisfying ||u||H1 ≤ m the following holds.

i) For every µ1, µ2 ∈ R we have

||dEµ1
(u)− dEµ2

(u)||H−1 ≤ C|µ1 − µ2| ;
ii) for any |µ| < 1 and any v ∈ H1(M, g0) with ||v||H1 ≤ 1 there holds

Eµ(u+ v) ≤ Eµ(u) + 〈dEµ(u), v〉H−1×H1 + C||v||2H1 .

Proof. i) For any v ∈ H1(M, g0) with ||v||H1 ≤ 1 compute

〈dEµ1
(u)− dEµ2

(u), v〉H−1×H1 = (µ2 − µ1)

∫
M

e2uv dµg0

≤ |µ2 − µ1|
( ∫

M

e4u dµg0

)1/2||v||L2 ≤ |µ2 − µ1|
( ∫

M

e4u dµg0

)1/2
.

The claim follows from the Moser-Trudinger inequality (3.2).
ii) By Taylor’s expansion, for every x ∈M there exists θ(x) ∈]0, 1[ such that

Eµ(u+ v)− Eµ(u)− 〈dEµ(u), v〉H−1×H1 =
1

2

∫
M

|∇v|2g0
dµg0

−
∫
M

fµe
2(u+θv)v2 dµg0

≤ 1

2
||v||2H1 + ||fµ||L∞

∫
M

e2(u+θv)v2 dµg0
.

By Hölder’s inequality and Sobolev’s embedding we get∫
M

e2(u+θv)v2 dµg0
≤
( ∫

M

e4(u+θv) dµg0

)1/2||v||2L4

≤ C
( ∫

M

e8u dµg0
·
∫
M

e8|v| dµg0

)1/4||v||2H1 ,
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and again our claim follows from the Moser-Trudinger inequality. �

Proof of Proposition 5.4. The following argument is similar to the reasoning in [24].
Clearly, we may assume that λ0 < 1 so that |µ − λ| < 1 for every µ ∈ Λ. Let

µ ∈ Λ be a point of differentiability of cµ. For a sequence of numbers µn ∈ Λ with
µn ↓ µ as n→∞ fix a sequence (pn) of paths pn ∈ P such that

max
t∈[0,1]

Eµ(pn(t)) ≤ cµ + (µn − µ), n ∈ N.

For any point u = pn(tn), tn ∈ [0, 1], with

(5.11) Eµn(u) ≥ cµn − (µn − µ)

then by (5.8) we have

(5.12) cµn − (µn − µ) ≤ Eµn(u) ≤ Eµ(u) ≤ max
t∈[0,1]

Eµ(pn(t)) ≤ cµ + (µn − µ).

Letting α = −c′µ + 1 > 0, for sufficiently large n0 ∈ N and any n ≥ n0 we have

cµn ≥ cµ − α(µn − µ).

Thus from (5.12) and (5.8) we see that

(5.13) 0 ≤ Eµ(u)− Eµn(u)

µn − µ
=

1

2

∫
M

e2u dµg0
≤ α+ 2;

that is, for all such u = pn(tn), n ≥ n0, we already have (5.10). Jensen’s inequality
then gives the uniform bound

(5.14) 2

∫
M

u dµg0 ≤ log

(∫
M

e2u dµg0

)
≤ log(2α+ 4) = C(µ) <∞

for all such u, n ≥ n0. Recalling that k0 < 0, for all such u we thus obtain the
estimate

||∇u||2L2 = 2Eµ(u)− 2k0

∫
M

u dµg0
+

∫
M

(f0 + µ)e2u dµg0

≤ 2Eµ(u) + C ≤ 2cµ + 2(µn − µ) + C ≤ C,
(5.15)

with uniform constants C = C(µ) independent of n for n ≥ n0.
In addition, since k0 < 0, from (5.14) and writing (5.15) as

||∇u||2L2 + 2k0

∫
M

u dµg0 = 2Eµ(u) +

∫
M

(f0 + µ)e2u dµg0 ≤ C,

we also obtain a uniform lower bound for the average of u, which together with
(5.13) and (5.15) implies the uniform bound

(5.16) ||u||2H1 +

∫
M

e2u dµg0 ≤ C1

for all u = pn(tn), n ≥ n0 as above, with a uniform constant C1 = C1(µ). Note
that n0 is independent of the choice of (pn).

Now assume by contradiction that there is δ > 0 such that ||dEµ(u)||H−1 ≥ 2δ
for sufficiently large n for every u = pn(tn) ∈ H1(M, g0) as above. By (5.16) we
have the uniform bound ||u||H1 < m for some number m > 0, and with the short-
hand notation || · || = || · ||H−1 , 〈·, ·〉 = 〈·, ·〉H−1×H1 , and again identifying dEµ(u)
with the vector ∇Eµ(u) ∈ H1 such that

dEµ(u)(∇Eµ(u)) = ‖dEµ(u)‖2H−1 = ‖∇Eµ(u)‖2H1 ,
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Lemma 5.5 implies

〈dEµn(u), dEµ(u)〉 = ||dEµ(u)||2 − 〈dEµ(u)− dEµn(u), dEµ(u)〉

≥ 1

2
||dEµ(u)||2 − 1

2
||dEµ(u)− dEµn(u)||2 ≥ 1

2
||dEµ(u)||2 − C|µ− µn|2

≥ 2δ2 − C|µ− µn|2 ≥ δ2

(5.17)

for any such (pn) and u = pn(tn), if n ≥ n1 for some sufficiently large n1 ≥ n0.
Choose a function φ ∈ C∞(R) such that 0 ≤ φ ≤ 1 and with φ(s) = 1 for

s ≥ −1/2, φ(s) = 0 for s ≤ −1. For n ∈ N, w ∈ H1(M, g0) let

φn(w) ≡ φ
(Eµn(w)− cµn

µn − µ
)
.

Note that for u = pn(tn) there holds φn(u) = 0 unless u satisfies (5.11).
Identifying dEµ(w) ∈ H−1 with a vector inH1(M, g0) through the inner product,

for n ≥ n1 we define new comparison paths p̃n by letting

p̃n(t) := pn(t)−
√
µn − µ φn(pn(t))

dEµ(pn(t))

||dEµ(pn(t))||
, 0 ≤ t ≤ 1.

Writing again u = pn(tn) and likewise ũ = p̃n(tn) for brevity and recalling that we
have |µ−µn| ≤ 1, we find ||u−ũ||H1 ≤ 1. Hence for any u = pn(tn) satisfying (5.11)
by Lemma 5.5.ii) and the first line of (5.17) with constants C = C(µ) independent
of u = pn(tn) for sufficiently large n ≥ n1 we obtain

Eµn(ũ) ≤ Eµn(u)−
√
µn − µφn(u)

||dEµ(u)||
〈dEµn(u), dEµ(u)〉+ C(µn − µ)φ2

n(u)

≤ Eµn(u)− 1

2

√
µn − µφn(u)||dEµ(u)||+ C(µn − µ)φn(u)

≤ Eµn(u)− δ
√
µn − µφn(u) + C(µn − µ)φn(u)

≤ Eµn(u)− δ

2

√
µn − µφn(u).

It follows that

cµn ≤ max
t∈[0,1]

Eµn(p̃n(t)) ≤ max
t∈[0,1]

(
Eµn(pn(t))− δ

2

√
µn − µφn(pn(t))

)
.

Since the maximum in the last inequality can only be achieved at points t where
Eµn(pn(t)) ≥ cµn − (µn − µ)/2 and hence φn(pn(t)) = 1, for n ≥ n1 we find

cµn ≤ max
t∈[0,1]

Eµn(pn(t))− δ

2

√
µn − µ

≤ max
t∈[0,1]

Eµ(pn(t))− δ

2

√
µn − µ

≤ cµ + (µn − µ)− δ

2

√
µn − µ

≤ cµn + (α+ 1)(µn − µ)− δ

2

√
µn − µ < cµn .

The contradiction proves the claim. �

Proposition 5.6. Let µ be a point of differentiability for the map cµ. Then the
functional Eµ admits a critical point uµ with energy Eµ(uµ) = cµ and volume∫
M
e2uµ dµg0

≤ 2(|c′µ|+ 3), and such that uµ is not a relative minimizer of Eµ.
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Proof. Let µ be a point of differentiability for the map cµ. Then Proposition 5.4
guarantees the existence of a sequence (pn)n∈N in P and a corresponding sequence
of points un = pn(tn) ∈ H1(M, g0), n ∈ N, satisfying (5.9) and (5.10), and hence
also (5.16), as shown in the proof of Proposition 5.4. Passing to a subsequence, if
necessary, we may then assume that un ⇁ uµ weakly in H1(M, g0) as n → ∞ for
some uµ ∈ H1(M, g0). Recalling that the map H1(M, g0) 3 ϕ 7→ e2ϕ ∈ L2(M, g0)
is compact, we also may assume that e2un → e2uµ in L2(M, g0).

Thus, with error o(1)→ 0 as n→∞ we obtain

o(1) = 〈dEµ(un), un − uµ〉 =

∫
M

(∇un,∇un −∇uµ)g0
dµg0

+ k0

∫
M

(un − uµ) dµg0
−
∫
M

fµe
2un(un − uµ) dµg0

= ‖∇un −∇uµ‖2L2 + o(1),

that is, un → uµ strongly in H1(M, g0) as n→∞. But then we also have conver-
gence Eµ(un) → Eµ(uµ) and dEµ(un) → dEµ(uµ) as n → ∞, and uµ is a critical
point for Eµ at level Eµ(uµ) = cµ.

Finally, uµ cannot be a relative minimizer of Eµ; otherwise Theorem 5.1 and
an estimate similar to (5.4) would give a contradiction to our choice of (pn) with
sup0≤t≤1Eµ(pn(t)) → cµ as n → ∞ and the fact that un = pn(tn) for some
tn ∈ [0, 1], n ∈ N. �

Proof of Theorem 5.2. Together with the bound cµ ≤ K log(1/λ) from Lemma 5.3,
Theorem 1.1 yields a sequence λn ↓ 0 such that λn|c′λn | → 0 as n → ∞. Writing
the Gauss-Bonnet identity∫

M

fdµg =

∫
M

Kgdµg = 2πχ(M)

for f = f0 + λn, g = e2ung0 and un = uλn from Proposition 5.6 in the form

2πχ(M)−
∫
M

f0e
2undµg0

= λn

∫
M

e2undµg0

from (5.10) we also obtain the uniform bound∫
M

|f0|e2undµg0 ≤ λn
∫
M

e2undµg0 + C ≤ 2λn|c′λn |+ C <∞,

and the total curvature bound (5.3) follows. �
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