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Abstract. Let (M, g0) be a closed Riemann surface (M,g0) of genus γ(M) >
1 and let f0 be a smooth, non-constant function with maxp∈M f0(p) = 0, all

of whose maximum points are non-degenerate. As shown in [12] for sufficiently
small λ > 0 there exist at least two distinct conformal metrics gλ = e2uλg0,

gλ = e2u
λ
g0 of Gauss curvature Kgλ = Kgλ = f0 + λ, where uλ is a rel-

ative minimizer of the associated variational integral and where uλ 6= uλ is
a further critical point not of minimum type. Here, by means of a more re-
fined mountain-pass technique we obtain additional estimates for the “large”
solutions uλ that allow to characterize their “bubbling behavior” as λ ↓ 0.

1. Introduction

Let (M, g0) be a closed, connected Riemann surface endowed with a smooth
background metric g0. A classical problem in differential geometry is the question
which smooth functions f : M → R arise as the Gauss curvature Kg of a conformal
metric g = e2ug0 on M and to characterize the set of all such metrics with Kg = f .
By the uniformization theorem we may assume that g0 has constant Gauss curvature
Kg0 ≡ k0. Finally, we normalize the volume of (M, g0) to unity.

Recall that the Gauss curvature of a conformal metric g = e2ug0 on M is given
by the equation

Kg = e−2u(−∆g0u+ k0) .

Therefore the question concerns the set of solutions of the equation

(1.1) −∆g0 u+ k0 = fe2u .

Given a solution u of (1.1), upon integrating and using the Gauss-Bonnet theo-
rem we immediately obtain the identity

(1.2)

∫

M

fdµg =

∫

M

k0dµg0 = k0 = 2πχ(M) ,

where dµg = e2udµg0 is the element of area in the metric g = e2ug0. In particular,
for equation (1.1) to admit a solution on a surface M with Euler characteristic
χ(M) > 0 the function f has to be positive somewhere. Surprisingly, as was shown
by Moser [18], in the case when (M, g0) is the projective plane P

2
R = S2/{id,−id}

the condition supS2 f > 0 for a function f ∈ C∞(S2) satisfying f(p) = f(−p) for
all p ∈ S2 also is sufficient for the existence of a solution u(p) ≡ u(−p) to (1.1).

For the general case when (M, g0) = (S2, gS2), known as Nirenberg’s problem,
further necessary conditions have been obtained by Kazdan-Warner [15], but the
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gap between these conditions and the sufficient conditions established by Chang-
Yang [7], Chang-Liu [8], and others remains considerable, and there is little known
about the structure of the set of solutions to equation (1.1) aside from the highly
degenerate case when f ≡ 1.

If χ(M) = 0 by the Gauss-Bonnet theorem (1.1) cannot be solved unless f ≡ 0, or
when f changes sign. In addition, whenever χ(M) ≤ 0, upon multiplying (1.1) with
the function e−2u and integrating by parts we find the further necessary condition

(1.3)

∫

M

fdµg0 =

∫

M

(−∆g0 u+ k0)e
−2udµg0 =

∫

M

(−2|∇u|2g0 + k0)e
−2udµg0 ≤ 0,

with equality if and only if ∇u = 0 and k0 = 0, that is, χ(M) = 0 and f ≡ 0.
It was shown by Kazdan-Warner [14] that the combined conditions (1.2) and (1.3)
again are both necessary and sufficient for the existence of a solution to (1.1) in the
case when χ(M) = 0, but again nothing seems to be known about the structure of
the solution set.

In this paper we will focus on the case when M has genus greater than one, that
is, when χ(M) < 0 (and hence k0 < 0). In this case solutions u of (1.1) can be
characterized as critical points of the functional

Ef (u) =
1

2

∫

M

(

|∇u|2g0 + 2k0u− fe2u
)

dµg0 , u ∈ H1(M, g0) .

Note that Ef is strictly convex and coercive on H1(M, g0) when f ≤ 0 does not
vanish identically. Hence for such f the functional Ef admits a unique critical
point uf ∈ H1(M, g0), which is a strict absolute minimizer of Ef . Thus we have
the following classical result.

Theorem 1.1. Let (M, g0) be closed with χ(M) < 0, and let f ∈ C∞(M) with
f ≤ 0, f 6≡ 0. Then (1.1) admits a unique solution.

Our first result shows the nondegeneracy of any relative minimizer of Ef for
arbitrary f .

Theorem 1.2. Let (M, g0) be closed with χ(M) < 0, and suppose that for some
f ∈ C∞(M) the functional Ef admits a relative minimizer uf ∈ H1(M, g0). Then
uf is a non-degenerate critical point of Ef in the sense that with a constant c0 > 0
there holds

(1.4) d2Ef (uf )(h, h) =

∫

M

(

|∇h|2g0 − 2fe2ufh2
)

dµg0 ≥ c0||h||2H1

for all h ∈ H1(M, g0).

As a special case this results includes a stability result of Aubin [1] for functions
f ≤ 0. Together with Theorem 1.1 and the implicit function theorem from (1.4)
we conclude that also for certain sign-changing functions f the corresponding func-
tional Ef admits critical points which can be characterized as relative minimizers
of Ef . In particular, for any given smooth, non-constant function f0 ≤ 0 with
maxp∈Mf0(p) = 0, letting fλ = f0 + λ, λ ∈ R, from Theorem 1.2 we deduce the
existence of relative minimizers uλ of Eλ = Efλ for sufficiently small λ > 0.

More precise quantitative conditions relating supM f and supM (−f) which are
sufficient for the existence of relative minimizers of Ef were established by Aubin
and Bismuth [2], [4].
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Observe that for functions f with maxM f > 0 the functional Ef is no longer
bounded from below, as can be seen by choosing a comparison function v ≥ 0
supported in the set where f > 0 and looking at Ef (sv) for large s > 0. Therefore,
and in view of Theorem 1.1, whenever Ef admits a relative minimizer there is a
“mountain pass” geometry and one may expect the existence of a further critical
point of saddle-type. In fact, in the case of the above functionals Eλ, Ding-Liu [12]
show the following result.

Theorem 1.3 (Ding-Liu [12]). For any smooth, non-constant function f0 ≤ 0 =
maxp∈M f0(p) consider the family of functions fλ = f0 + λ, λ ∈ R, and the asso-
ciated family of functionals Eλ(u) = Efλ(u) on H

1(M, g0). There exists a number
λ∗ > 0 such that for 0 < λ < λ∗ the functional Eλ admits a local minimizer uλ and
a further critical point uλ 6= uλ of mountain-pass type.

Thus, uniqueness may be lost when f is sign-changing. However, the previous
result gives no information about the geometric shape of the solutions. Here we give
a new proof of the Ding-Liu result using the “monotonicity trick” from [20], [21] in
a way similar to [23] which allows to bound the volume of the “large” solutions uλ

as λ ↓ 0 suitably. We are thus able to establish the following result.

Theorem 1.4. Let f0 ≤ 0 be a smooth, non-constant function, all of whose
maximum points p0 are non-degenerate with f0(p0) = 0, and for λ ∈ R also let
fλ = f0 + λ, Eλ(u) = Efλ as in Theorem 1.3 above. There exist I ∈ N, a sequence
λn ↓ 0 and a sequence of non-minimizing critical points un = uλn of Eλn such that

for suitable r
(i)
n ↓ 0, p

(i)
n → p

(i)
∞ ∈ M with f(p

(i)
∞ ) = 0, 1 ≤ i ≤ I, the following

holds.
i) We have un → u∞ smoothly locally on M∞ =M \ {p(i)∞ ; 1 ≤ i ≤ I}, and u∞

induces a complete metric g∞ = e2u∞g0 on M∞ of finite total curvature Kg∞ = f0.

ii) For each 1 ≤ i ≤ I, either a) there holds r
(i)
n /

√
λn → 0 and in local conformal

coordinates x around p
(i)
n = 0 we have

wn(x) := un(r
(i)
n x)− un(0) + log 2 → w∞(x) = log

( 2

1 + |x|2
)

smoothly locally in R2, where w∞ induces a spherical metric g∞ = e2w∞g
R

2 of

curvature Kg∞ = 1 on R2, or b) we have r
(i)
n =

√
λn, and in local conformal

coordinates around p
(i)
∞ with a constant c

(i)
∞ there holds

wn(x) = un(r
(i)
n x) + log(λn) + c(i)∞ → w∞(x)

smoothly locally in R2, where the metric g∞ = e2w∞g
R

2 on R2 has finite volume

and finite total curvature with Kg∞(x) = 1 + (Ax, x), where A = 1
2Hessf (p

(i)
∞ ).

In conclusion, in case ii.a) for suitably small λ > 0 there exist (at least) two

distinct conformal metrics gλ = e2uλg0, g
λ = e2u

λ

g0 of Gauss curvature Kgλ =
Kgλ = fλ, which differ (essentially) only by huge spherical bubbles of curvature
λ attached along cusps protruding from M near certain zero points of f0. More
detailed information is given in Proposition 5.3 and Remark 5.4 below.

We thank the referee for bringing the paper [12] to our attention.

2. Nondegeneracy and stability of relative minimizers

Throughout the remainder of this paper we assume that (M, g0) is closed with
χ(M) < 0. In this section we present the proof of Theorem 1.2.
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Proposition 2.1. Suppose that for some f ∈ C∞(M, g0) the functional Ef admits
a relative minimizer uf ∈ H1(M, g0). Then uf is a non-degenerate critical point of
Ef in the sense of (1.4).

For a relative minimizer uf ∈ H1(M, g0) of Ef we have

(2.1) d2Ef (uf )(h, h) =

∫

M

(

|∇h|2g0 − 2fe2ufh2
)

dµg0 ≥ 0

for all h ∈ H1(M, g0). Therefore

c0 := inf
‖h‖H1=1

d2Ef (uf )(h, h) ≥ 0.

The claim in Proposition 2.1 is equivalent to the claim that c0 > 0. Otherwise
c0 = 0, and the following two lemmas will lead to a contradiction.

Lemma 2.2. If c0 = 0 there exists h ∈ H1(M, g0) such that

d2Ef (uf )(h, h) = 0 and ‖h‖H1 = 1.

Proof. Let (hk)k∈N with ‖hk‖H1 = 1 such that d2Ef (uf)(hk, hk) → 0 as k → ∞.
Since (hk) is bounded in H1, we may assume that hk ⇁ h weakly in H1(M, g0) and
strongly in Lp for any p < ∞ for some h ∈ H1(M, g0). Since uf is smooth, then
we also have convergence fe2ufh2k → fe2ufh2 in L1, and from (2.1) it follows that

‖∇hk‖2L2 = d2Ef (uf )(hk, hk) + 2

∫

M

fe2ufh2kdµg0 → 2

∫

M

fe2ufh2dµg0

≤ d2Ef (uf )(h, h) + 2

∫

M

fe2ufh2dµg0 = ‖∇h‖2L2 as k → ∞ .

Recalling that hk → h weakly in H1(M, g0) and strongly in L2, we conclude strong
convergence hk → h in H1(M, g0). The claim follows. �

By Lemma 2.2, when c0 = 0 the functional v 7→ d2Ef (uf )(v, v) attains a mini-
mum at v = h. It follows that

d2Ef (uf )(h,w) = 0 for all w ∈ H1(M, g0);

that is, h ∈ H1(M, g0) weakly solves the equation

(2.2) −∆g0h = 2fe2ufh in (M, g0).

In particular then h is smooth and classically solves (2.2).

Lemma 2.3. Assume c0 = 0 and let h ∈ H1(M, g0) as determined in Lemma 2.2.
Then

d4Ef (uf )(h, h, h, h) = −8

∫

M

fe2ufh4 < 0.

Proof. Note that h 6= const. Otherwise (2.2) would yield
∫

M

fe2uf dµg0 = 0

contrary to (1.2). Multiplying equation (2.2) by h3 we get

2fe2ufh4 = −h3∆g0h = −1

4
∆g0(h

4) + 3|∇h|2g0h2.
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Upon integration this yields

d4Ef (uf )(h, h, h, h) = −8

∫

M

fe2ufh4dµg0 = −12

∫

M

|∇h|2g0h2dµg0 < 0,

as claimed. �

Proof of Proposition 2.1. Assume by contradiction that c0 = 0 and let h ∈ H1(M, g0)
as determined in Lemma 2.2. Using the fact that dEf (uf ) = 0 and the relation
d2Ef (uf )(h, h) = 0 we first can expand

Ef (uf + εh) = Ef (uf ) +
ε3

6
d3Ef (uf )(h, h, h) + O(ε4).

Recalling that uf is a relative minimizer, we see that d3Ef (uf )(h, h, h) = 0. But
then the expansion to fourth order by Lemma 2.3 yields

Ef (uf + εh) = Ef (uf ) +
ε4

24
d4Ef (uf )(h, h, h, h) +O(ε5) < Ef (uf )

for small ε > 0, and we arrive at the desired contradiction. �

From Proposition 2.1 and the implicit function theorem the following result now
is immediate.

Proposition 2.4. Suppose that for some f ∈ C∞(M, g0) the functional Ef admits
a relative minimizer uf ∈ H1(M, g0). Then there exists an open neighborhood U of
f in C0(M, g0) and a smooth map U ∋ ϕ 7→ uϕ ∈ H1(M, g0) such that for every
ϕ ∈ U the function uϕ is a strict relative minimizer of Eϕ.

3. Existence of a saddle-type critical point

For any smooth, non-constant function f0 ≤ 0 = maxp∈Mf0(p) consider the
family of functions fλ = f0 + λ, λ ∈ R, and the associated family of functionals
Eλ(u) = Efλ(u) on H1(M, g0). By Proposition 2.4 there exists λ0 > 0 such that
for any λ ∈ Λ0 =]0, λ0] the functional Eλ admits a strict relative minimizer uλ ∈
H1(M, g0), depending smoothly on λ. In particular, as λ ↓ 0 we have smooth
convergence uλ → u0, the unique solution of (1.1) for f = f0. Hence, after replacing
λ0 with a smaller number λ0 > 0, if necessary, we can find ρ > 0 such that

Eλ(uλ) = inf
||u−u0||H1<ρ

Eλ(u) ≤ sup
µ,ν∈Λ0

Eµ(uν)

< β0 := inf
µ∈Λ0; ρ/2<||u−u0||H1<ρ

Eµ(u),
(3.1)

uniformly for all λ ∈ Λ0. Clearly, we may assume that λ0 < 1. Fix some number
λ ∈ Λ0. Recalling that for λ > 0 the functional Eλ is unbounded from below, we
can also fix a function vλ ∈ H1(M, g0) such that

Eλ(vλ) < Eλ(uλ)

and hence

(3.2) cλ = inf
p∈P

max
t∈[0,1]

Eλ(p(t)) ≥ β0 > Eλ(uλ),

where

(3.3) P = {p ∈ C
(

[0, 1];H1(M, g0)
)

: p(0) = u0, p(1) = vλ}.
Note that since uλ → u0 for λ ↓ 0, for sufficiently small λ0 > 0 we can fix the initial
point of comparison paths p ∈ P to be u0 instead of uλ.
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For suitable choice of vλ we obtain an explicit estimate of the mountain-pass
energy level cλ associated with P .

Lemma 3.1. For any K > 4π there is λK ∈]0, λ0/2] such that for any 0 < λ <
λK there is vλ ∈ H1(M, g0) so that choosing vµ = vλ for every µ ∈ [λ, 2λ] the
number cµ is unambiguously defined independent of λ, and we obtain the bound
cµ ≤ K log(2/µ).

Proof. Let p0 ∈M be such that f0(p0) = 0. Choose local conformal coordinates x
near p0 = 0 such that e2u0g0 = e2v0g

R

2 for some smooth function v0 with v0(0) = 0.
Letting A = 1

2Hessf (p0), for a suitable constant L > 0 we have

f0(x) = (Ax, x) +O(|x|3) ≥ −λ/2 on B√
λ/L(0),

and fλ ≥ λ/2 on B√
λ/L(0). Set wλ(x) = zλ(Lx/

√
λ), where zλ ∈ H1

0 (B1(0)) is

given by zλ(x) = log(1/|x|) for λ ≤ |x| ≤ 1 and zλ(x) = log(1/λ) for |x| ≤ λ,
satisfying

‖∇wλ‖2L2 = ‖∇zλ‖2L2 = 2π log(1/λ).

Extending wλ(x) = 0 outside B√
λ/L(0), for sufficiently small λ > 0 and any s > 0

we obtain
∫

M

fλe
2(u0+swλ)dµg0 ≥ λ

2

∫

B√
λ/L(0)

e2(u0+swλ)dµg0 − ‖f0‖L∞

∫

M

e2u0dµg0

≥ λ

4

∫

B√
λ/L(0)

e2swλdx− C‖f0‖L∞,

where after substituting y = Lx/
√
λ we have

λ

∫

B√
λ/L(0)

e2swλdx =

∫

B1(0)

e2(szλ+log(λ/L))dy

≥
∫

Bλ(0)

e2(szλ+log(λ/L))dx = πL−2λ4−2s.

Given any K > 4π, we let K1 =
1
2 (K +4π), δ = K1−4π

4π and use Young’s inequality

2ab ≤ δa2 + b2/δ for a, b > 0 to bound

‖∇(u0 + swλ)‖2L2 ≤ (1 + δ)s2‖∇wλ‖2L2 + (1 +
1

δ
)‖∇u0‖2L2 =

K1s
2

4π
‖∇wλ‖2L2 + C,

where C = C(u0,K) > 0. Since k0 < 0, wλ ≥ 0, for any s > 0 we also have
∫

M

k0(u0 + swλ)dµg0 ≤ k0

∫

M

u0dµg0 .

Thus, with a constant C0 = C0(u0, f0,K) > 0 for any s > 0 we find

Eλ(u0 + swλ) ≤ K1
s2

4
log(1/λ)− π

8L2
λ4−2s + C0.

In particular, for any 0 < λ < 1 we have Eλ(u0 + swλ) → −∞ as s → ∞ and we
may fix some sλ > 2 with vλ = u0 + sλwλ satisfying Eλ(vλ) < infµ∈Λ0 Eµ(uµ) to
obtain

cλ ≤ sup
s>0

Eλ(u0 + swλ) ≤ sup
s>0

(

K1
s2

4
log(1/λ)− π

8L2
λ4−2s + C0

)

.
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For any 0 < λ < 1 the supremum in the latter quantity is achieved for some
s = s(λ) > 2, with s(λ) → 2 as λ ↓ 0. Thus, for all sufficiently small λ > 0 there
results

cλ ≤ K log(1/λ),

as desired. Since Eµ(vλ) ≤ Eλ(vλ) for µ > λ, the same comparison function vλ can
be used for every µ ∈ Λ :=]λ, 2λ[⊂ Λ0, and for such µ we obtain the bound

(3.4) Eµ(vλ) < Eµ(uµ) ≤ sup
ν∈Λ

Eµ(uν) < β0 ≤ cµ ≤ K log(1/λ) ≤ K log(2/µ),

where β0 and cµ for µ ∈ Λ are as defined in (3.1), (3.2). Moreover, since vλ by
construction depends continuously on λ with Eλ(vλ) < infµ∈Λ0 Eµ(uµ) the number
cµ is defined independently of λ such that λ < µ < 2λ. The claim follows. �

Note that there holds

(3.5) Eµ(u)− Eν(u) = −µ− ν

2

∫

M

e2u dµg0

for every u ∈ H1(M, g0) and every µ, ν ∈ R. Given 0 < λ < λ0/2, with Λ =]λ, 2λ[
as above it follows that the function

Λ ∋ µ 7→ cµ

is non-increasing in µ, and therefore differentiable at almost every µ ∈ Λ.
We now have the following result.

Proposition 3.2. Suppose the map Λ ∋ µ 7→ cµ is differentiable at some µ > λ.
Then there exists a sequence (pn)n∈N in P and a corresponding sequence of points
un = pn(tn) ∈ H1(M, g0), n ∈ N, such that

(3.6) Eµ(un) → cµ, sup
0≤t≤1

Eµ(pn(t)) → cµ, dEµ(un) → 0 in H−1 as n→ ∞,

and with (un) satisfying, in addition, the “entropy bound”

(3.7)
1

2

∫

M

e2un dµg0 =
∣

∣

d

dµ
Eµ(un)

∣

∣ ≤ |c′µ|+ 3, uniformly in n.

For the proof of Proposition 3.2 we note the following lemma.

Lemma 3.3. For any m > 0 there exists a constant C = C(M, g0, f0,m) such that
i) for every µ1, µ2 ∈ R and for every u ∈ H1(M, g0) satisfying ||u||H1(M) ≤ m

there holds

||dEµ1(u)− dEµ2(u)||H−1 ≤ C|µ1 − µ2| .
ii) For any |µ| < 1, any u, v ∈ H1(M, g0) with ||v||H1(M,g0) ≤ 1, we have

Eµ(u + v) ≤ Eµ(u) + 〈dEµ(u), v〉H−1×H1 + C||v||2H1(M,g0)
.

Proof. i) Pick v ∈ H1(M, g0) such that ||v||H1(M,g0) ≤ 1 and compute

〈dEµ1(u)− dEµ2(u), v〉H−1×H1 = (µ2 − µ1)

∫

M

e2uv dµg0

≤ |µ2 − µ1|
(

∫

M

e4u dµg0

)1/2||v||L2(M,g0) ≤ |µ2 − µ1|
(

∫

M

e4u dµg0

)1/2
.

The claim follows from the Moser-Trudinger inequality as in [6], Corollary 1.7.
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ii) By Taylor’s expansion, for every x ∈M there exists θ(x) ∈]0, 1[ such that

Eµ(u + v)− Eµ(u)− 〈dEµ(u), v〉H−1×H1 =
1

2

∫

M

|∇v|2g0 dµg0 −
∫

M

fµe
2(u+θv)v2 dµg0

≤ 1

2
||v||2H1(M,g0)

+ ||fµ||L∞

∫

M

e2(u+θv)v2 dµg0 .

By Hölder’s inequality and Sobolev’s embedding we get
∫

M

e2(u+θv)v2 dµg0 ≤
(

∫

M

e4(u+θv) dµg0

)1/2||v||2L4(M)

≤ C
(

∫

M

e8u dµg0 ·
∫

M

e8|v| dµg0

)1/4||v||2H1(M,g0)
,

and again our claim follows from the Moser-Trudinger inequality. �

Proof of Proposition 3.2. The following argument is similar to the reasoning in [23].
Clearly, we may assume that λ0 < 1 so that |µ−λ| < 1 for every µ ∈ Λ. Let µ ∈ Λ
be a point of differentiability of cµ. For a sequence of numbers µn ∈ Λ with µn ↓ µ
as n→ ∞ fix a sequence (pn) of paths pn ∈ P such that

max
t∈[0,1]

Eµ(pn(t)) ≤ cµ + (µn − µ), n ∈ N.

For any point u = pn(tn), tn ∈ [0, 1], with

(3.8) Eµn(u) ≥ cµn − (µn − µ)

then by (3.5) we have

(3.9) cµn − (µn − µ) ≤ Eµn(u) ≤ Eµ(u) ≤ max
t∈[0,1]

Eµ(pn(t)) ≤ cµ + (µn − µ).

Letting α = −c′µ + 1 > 0, for sufficiently large n0 ∈ N and any n ≥ n0 we have

cµn ≥ cµ − α(µn − µ).

Thus from (3.9) and (3.5) we see that

(3.10) 0 ≤ Eµ(u)− Eµn(u)

µn − µ
=

1

2

∫

M

e2u dµg0 ≤ α+ 2;

that is, for all such u = un, n ≥ n0, we already have (3.7). Jensen’s inequality then
gives the uniform bound

(3.11) 2

∫

M

u dµg0 ≤ log

(
∫

M

e2u dµg0

)

≤ log(2α+ 4) = C(µ) <∞

for all such (pn) and u = un, n ≥ n0. Recalling that k0 < 0, for all such u = un,
n ≥ n0, we now obtain the estimate

||∇u||2L2 = 2Eµ(u)− 2k0

∫

M

u dµg0 +

∫

M

(f0 + µ)e2u dµg0

≤ 2Eµ(u) + C ≤ 2cµ + 2(µn − µ) + C ≤ C,

(3.12)

with uniform constants C = C(µ) independent of n. In addition, since k0 < 0, from
writing (3.12) as

||∇u||2L2 + 2k0

∫

M

u dµg0 = 2Eµ(u) +

∫

M

(f0 + µ)e2u dµg0 ≤ C
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we also obtain a uniform lower bound for the average of u, which together with
(3.11) and (3.12) implies the uniform bound

(3.13) ||u||2H1 +

∫

M

e2u dµg0 ≤ C1

for all u = un as above, n ≥ n0, with a uniform constant C1 = C1(µ). Note that
n0 is independent of the choice of (pn).

Now assume by contradiction that there exists δ > 0 such that ||dEµ(u)||H−1 ≥
2δ for sufficiently large n for every u = un = pn(tn) ∈ H1(M, g0) as above. By
(3.13) we have the uniform bound ||u||H1 < m for some number m > 0, and with
the short-hand notation || · || = || · ||H−1 Lemma 3.3 implies

〈dEµn(u), dEµ(u)〉 = ||dEµ(u)||2 − 〈dEµ(u)− dEµn(u), dEµ(u)〉

≥ 1

2
||dEµ(u)||2 −

1

2
||dEµ(u)− dEµn(u)||2 ≥ 1

2
||dEµ(u)||2 − C|µ− µn|2

≥ 2δ2 − C|µ− µn|2 ≥ δ2

(3.14)

for any such (pn) and u, if n ≥ n1 for some sufficiently large n1 ≥ n0.
Choose a function φ ∈ C∞(R) such that 0 ≤ φ ≤ 1 and with φ(s) = 1 for

s ≥ −1/2, φ(s) = 0 for s ≤ −1. For n ∈ N, w ∈ H1(M, g0) let

φn(w) ≡ φ
(Eµn(w) − cµn

µn − µ

)

.

Note that for u = pn(tn) there holds φn(u) = 0 unless u satisfies (3.8).
Identifying dEµ(w) ∈ H−1 with a vector inH1(M, g0) through the inner product,

for n ≥ n1 we define new comparison paths p̃n by letting

p̃n(t) := pn(t)−
√
µn − µ φn(pn(t))

dEµ(pn(t))

||dEµ(pn(t))||
, 0 ≤ t ≤ 1.

Writing again u = pn(tn) and likewise ũ = p̃n(tn) for brevity and recalling that we
have |µ−µn| ≤ 1, we find ||u− ũ||H1 ≤ 1. Hence for any u = pn(tn) satisfying (3.8)
by the second part of Lemma 3.3 and (3.13) with constants C = C(µ) independent
of u = pn(tn) for sufficiently large n ≥ n1 on account of (3.14) we obtain

Eµn(ũ) ≤ Eµn(u)−
√
µn − µφn(u)

||dEµ(u)||
〈dEµn(u), dEµ(u)〉+ C(µn − µ)φ2n(u)

≤ Eµn(u)−
1

2

√
µn − µφn(u)||dEµ(u)||+ C(µn − µ)φn(u)

≤ Eµn(u)− δ
√
µn − µφn(u) + C(µn − µ)φn(u)

≤ Eµn(u)−
δ

2

√
µn − µφn(u).

It follows that

cµn ≤ max
t∈[0,1]

Eµn(p̃n(t)) ≤ max
t∈[0,1]

(

Eµn(pn(t))−
δ

2

√
µn − µφn(pn(t))

)

.
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Since the maximum in the last inequality can only be achieved at points t where
Eµn(pn(t)) ≥ cµn − (µn − µ)/2 and hence φn(pn(t)) = 1, for n ≥ n1 we find

cµn ≤ max
t∈[0,1]

Eµn(pn(t))−
δ

2

√
µn − µ

≤ max
t∈[0,1]

Eµ(pn(t))−
δ

2

√
µn − µ

≤ cµ + (µn − µ)− δ

2

√
µn − µ

≤ cµn + (α+ 1)(µn − µ)− δ

2

√
µn − µ < cµn .

The contradiction proves the claim. �

Proposition 3.4. Let µ be a point of differentiability for the map cµ. Then the
functional Eµ admits a critical point uµ with energy Eµ(u

µ) = cµ and volume
∫

M
e2u

µ

dµg0 ≤ 2(|c′µ|+ 3), and such that uµ is not a relative minimizer of Eµ.

Proof. Let µ be a point of differentiability for the map cµ. Then Proposition 3.2
guarantees the existence of a sequence (pn)n∈N in P and a corresponding sequence
of points un = pn(tn) ∈ H1(M, g0), n ∈ N, satisfying (3.6) and (3.7), and hence
also (3.13), as shown in the proof of Proposition 3.2. Passing to a subsequence, if
necessary, we may then assume that un ⇁ uµ weakly in H1(M, g0) as n → ∞ for
some uµ ∈ H1(M, g0). Recalling that the map H1(M, g0) ∋ ϕ 7→ e2ϕ ∈ L2(M, g0)
is compact, we also may assume that e2un → e2u

µ

in L2(M, g0).
Thus, with error o(1) → 0 as n→ ∞ we obtain

o(1) = 〈dEµ(un), un − uµ〉

=

∫

M

(∇un,∇un −∇uµ)g0 dµg0

+ k0

∫

M

(un − uµ) dµg0 −
∫

M

fµe
2un(un − uµ) dµg0

= ‖∇un −∇uµ‖2L2 + o(1),

that is, un → uµ strongly in H1(M, g0) as n → ∞. But then we also have conver-
gence Eµ(un) → Eµ(u

µ) and dEµ(un) → dEµ(u
µ) as n → ∞, and uµ is a critical

point for Eµ at level Eµ(u
µ) = cµ.

Finally, uµ cannot be a relative minimizer of Eµ; otherwise Theorem 1.2 and
an estimate similar to (3.1) would give a contradiction to our choice of (pn) with
sup0≤t≤1Eµ(pn(t)) → cµ as n → ∞ and the fact that un = pn(tn) for some
tn ∈ [0, 1], n ∈ N. �

4. Completion

It is not difficult to also find non-minimizing critical points for the exceptional
values of µ ∈ Λ where the map µ 7→ cµ fails to be differentiable. Fix µ ∈ Λ as above.
By Proposition 3.4, there is a sequence of numbers µn ↓ µ and critical points un of
Eµn with Eµn(un) = cµn and not of minimum type for every n ∈ N. Our aim is to
show that (un) is relatively compact. First we note the following estimate.
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Lemma 4.1. Let f ∈ C∞(M) and suppose u ∈ H1(M, g0) is a critical point for
the functional Ef . Then with a constant C(f) depending only on ‖f‖C1 and on
(M, g0) there holds

(4.1)

∫

M

f4e2u dµg0 ≤ C(f).

Proof. Rearranging terms in (1.3) and recalling that k0 < 0, we obtain

2

∫

M

|∇u|2g0e
−2u dµg0 ≤ k0

∫

M

e−2u dµg0 −
∫

M

f dµg0 ≤ C1(f).(4.2)

Next, multiply (1.1) by f3 and integrate by parts to find
∫

M

f4e2u dµg0 = 3

∫

M

(∇u,∇f)g0 f
2 dµg0 + k0

∫

M

f3 dµg0

≤ C2(f)

∫

M

|∇u|g0f2 dµg0 + C2(f).

(4.3)

But by Young’s inequality 2ab ≤ δa2 + δ−1b2 for all a, b, δ > 0 we can bound

C2(f)

∫

M

|∇u|g0f2 dµg0 ≤ 1

2

∫

M

f4e2u dµg0 + C3(f)

∫

M

|∇u|2g0e
−2u dµg0 .

Our claim then follows from (4.2) and (4.3). �

Via Jensen’s inequality, applied with the probability measure f2dµg0/‖f‖2L2,
from (4.1) for any critical point u of Ef we conclude the bound

(4.4)

∫

M

f2u dµg0 ≤ ‖f‖2L2 log
(

∫

M
f2eu dµg0

‖f‖2L2

)

≤ C(f).

Given any non-constant f0 ∈ C∞(M) as in Theorem 1.2, any 0 < λ < λ0/2 < 1
as above, for any µ ∈ Λ = [λ, 2λ], any sequence µn ↓ µ (n→ ∞), and any sequence
of critical points un of Eµn we then obtain the uniform bound

(4.5) ū
(fµn )
n :=

∫

M

f2
µn
un dµg0/‖fµn‖2L2 ≤ C(f0)

for the fµn -averages of un, n ∈ N.
Recall the following well-known variant of the Poincaré inequality.

Lemma 4.2. There exists a uniform constant C > 0 such that for any µ ∈ Λ and
any u ∈ H1(M, g0) there holds

(4.6) ‖u− ū(fµ)‖L2 ≤ C‖∇u‖L2.

Proof. For completeness we give the simple proof, similar, for instance, to the
proof of Theorem 1.5 in [19]. Suppose by contradiction that there is a sequence of

functions vn ∈ H1(M, g0) with v̄
(fµn )
n = 0 for a sequence (µn) ⊂ Λ such that

1 = ‖vn‖L2 = ‖vn − v̄
(fµn )
n ‖L2 ≥ n‖∇vn‖L2 , n ∈ N.

Then a subsequence vn → v strongly in H1(M, g0), where ‖v‖L2 = 1 and ∇v = 0;
hence v ≡ const = c0 6= 0, since M is connected. Moreover, we may assume that

µn → µ and therefore c0 = v̄(fµ) = limn→∞ v̄
(fµn )
n = 0. The contradiction proves

the claim. �
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Lemma 4.3. For un as above there exists a uniform constant C > 0 such that

(4.7) ‖∇un‖2L2 + |k0||ūn| ≤ 4Eµn(un) + C, n ∈ N.

Proof. In view of (4.6) and the Gauss-Bonnet theorem for u = un then we have

2Eµn(u) =

∫

M

(

|∇u|2g0 + 2k0u− fe2u
)

dµg0 = ‖∇u‖2L2 + 2k0ū− 2πχ(M)

= ‖∇u‖2L2 + 2k0ū
(fµn ) + 2k0(ū − ū(fµn ))− 2πχ(M)

≥ ‖∇u‖2L2 + 2k0ū
(fµn ) − C‖∇u‖L2 − C.

Also using (4.5) to bound

k0ū
(fµn ) ≥ |k0||ū(fµn )| − C ≥ |k0||ū| − |k0||ū− ū(fµn )| − C

in view of (4.6) we find

Eµn(u) ≥
1

2
‖∇u‖2L2 + |k0||ū| − C‖∇u‖L2 − C ≥ 1

4
‖∇u‖2L2 + |k0||ū| − C,

and our claim follows. �

Letting un for suitable µn ↓ µ ∈ Λ be the “large” solutions un = uµn constructed
in Proposition 3.4 with Eµn(un) = cµn ≤ cµ, from Lemma 4.3 we obtain a uniform
bound ‖un‖H1 ≤ C, n ∈ N. The same argument as in the proof of Proposition 3.4
now yields convergence of a subsequence un → uµ in H1(M, g0) as n→ ∞, and by
continuity there holds dEµ(u

µ) = 0.
Moreover, uµ cannot be a relative minimizer of Eµ; otherwise, by Theorem 1.2

the function uµ would be a strict relative minimizer of Eµ in the sense of (1.4),
and by continuity for sufficiently large n ∈ N also un would be a strict relative
minimizer of Eµn , contrary to assumption. Thus, in particular, uµ 6= uµ.

5. Proof of Theorem 1.4

In order to characterize the “large” solutions uλ geometrically one would like to
apply the results of Brezis-Merle [5], Li-Shafrir [16], or Martinazzi [17] to show that
uλ blows up in a “round bubble” as λ ↓ 0 suitably. However, the results in [5] and
[16] cannot be applied in the case when fλ changes sign, as in our case. Moreover,
all the former results require a uniform bound on volume, which is not available
here. However, with the help of the bounds furnished by our existence proof we can
overcome these difficulties. First observe that by arguing as in [22], from Lemma
3.1 we obtain the following result.

Lemma 5.1. We have lim infµ↓0(µ|c′µ|) ≤ 4π.

Proof. Assume by contradiction that for constants K > K1 > 4π, µ0 > 0 and
almost every µ ∈]0, µ0] we have |c′µ| ≥ K/µ. Then for any µ0 > µ1 > 0 we find

cµ1 ≥ cµ0 +

∫ µ0

µ1

|c′µ|dµ ≥ cµ0 +K log(µ0/µ1).

But this is impossible since by Lemma 3.1 we have cµ1 ≤ K1 log(2/µ1) for all
sufficiently small µ1 > 0. �



“LARGE” CONFORMAL METRICS OF PRESCRIBED GAUSS CURVATURE 13

Now recall that by Proposition 3.4 for almost every sufficiently small µ > 0 the
non-minimizing solution uµ obtained by our method satisfies the volume bound
∫

M
e2u

µ

dµg0 ≤ 2|c′µ|+ 6. Writing again λ instead of µ, we then have a sequence of

“large” solutions un = uλn of (1.1) for fn = f0 + λn with λn ↓ 0, satisfying

(5.1) lim sup
n→∞

(

λn

∫

M

e2un dµg0

)

≤ 8π.

Writing the Gauss-Bonnet identity (1.2) in the form

2πχ(M)−
∫

M

f0e
2undµg0 = λn

∫

M

e2undµg0

from (5.1) we also obtain the uniform bound

(5.2) sup
n∈N

∫

M

(|f0|+ λn)e
2undµg0 <∞.

As shown by Ding-Liu [12], p. 1063 f., there exists C0 > 0 such that un ≥ −C0

for all n. Moreover, their proof of [12], Lemma 2, gives the uniform local bound

(5.3)

∫

Ω

(|∇u+n |2g0 + |u+n |2)dµg0 ≤ C(Ω),

where s+ = max{s, 0}, s ∈ R, for any domain Ω ⊂ M whose closure is contained
in M− = {p ∈M ; f0(p) < 0}; see also the Appendix.

It then also follows that un ≤ C′(Ω) for any such domain. To see this, fix a
ball B ⊂ B ⊂ M−. Since (u+n ) is H1-bounded on B, by the Moser-Trudinger
inequality (see Corollary 1.7 of [6]) the sequence (fne

2un) is L2-bounded on B.
Letting vn ∈ H2 ∩H1

0 (B) be the unique solution of the auxiliary problem

−∆g0vn + k0 = fne
2un on B, vn = 0 on ∂B,

then (vn) is bounded in H2(B), and hence |vn| ≤ C by Sobolev’s embedding. The
function wn = un − vn is harmonic on B. Since (u+n ) is H

1-bounded, the uniform
bound |vn| ≤ C together with the mean value theorem for harmonic functions
then shows that wn, and hence un, is locally uniformly bounded from above in the
interior of B.

Thus, if a subsequence (un) blows up near a point p0 ∈M in the sense that for
every r > 0 there holds supBr(p0) |un| → ∞, necessarily f0(p0) = 0 and there exist

points pn → p0 such that un(pn) = supp∈Br(p0) un(p) for some r > 0.

Let p0 be such a blow-up point for a subsequence (un). Introducing local isother-
mal coordinates x on Br(p0) near p0 = 0, we have g0 = e2v0g

R

2 for some smooth
function v0. From (un) we then obtain a sequence vn = un + v0 of solutions to

(5.4) −∆vn = (f0(x) + λn)e
2vn on BR(0)

for some R > 0 and there is a sequence xn → 0 such that

vn(xn) = sup
|x|≤R

vn(x) → ∞.

In particular, we have ∆vn(xn) ≤ 0; hence f0(xn) + λn ≥ 0, which implies

(5.5) |xn|2 ≤ Cλn

for some constant C > 0.
As final preparation for the proof of Theorem 1.4 note that the arguments of

Brezis-Merle [5] give the following result.
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Lemma 5.2. For any r > 0 there holds

lim sup
n→∞

∫

Br(0)

(f0 + λn)
+e2vndx ≥ 2π.

Proof. Suppose by contradiction that for some r > 0 on B = Br(0) there holds

(5.6) lim sup
n→∞

∫

B

(f0 + λn)
+e2vndx = α < 2π.

Split vn = v
(0)
n + v

(+)
n + v

(−)
n , where ∆v

(0)
n = 0 in B with v

(0)
n = vn on ∂B, and

where v
(±)
n ∈ H1

0 (B) solve

−∆v(±)
n = (f0 + λn)

±e2vn on B.

Then from (5.6) and [5], Theorem 1, we have the uniform bound ‖e2v(+)
n ‖Lp(B) ≤ C

for any 1 ≤ p < 2π/α. Moreover, by the maximum principle and the locally uniform

bounds for (un) on M− we have |v(0)n | ≤ sup∂B |vn| ≤ C(r) < ∞, v
(−)
n ≤ 0 in B.

Therefore e2vn ≤ Ce2v
(+)
n ∈ Lp(B) for any 1 ≤ p < 2π/α with uniform bounds.

Fixing p = π/α+1/2 > 1, from elliptic regularity theory we then obtain a uniform
bound for (vn) in W

2,p(B) →֒ C0(B), contrary to our assumption that (vn) blows
up near x = 0. �

Choose a subsequence (un) blowing up at the points p
(i)
∞ , 1 ≤ i ≤ I. In view

of the locally uniform bounds for (un) on M− a further subsequence un → u∞
smoothly locally on M∞ = M \ {p(i)∞ ; 1 ≤ i ≤ I}. Moreover, from (5.2) we have a
uniform global L1-bound for (−∆g0un)n. Therefore, we may assume that we also
have un ⇁ u∞ weakly in W 1,p(M) for any p < 2, and u∞ solves the equation

(5.7) −∆g0u∞ + k0 = f0e
2u∞ +

I
∑

i=1

2πaiδp(i)
∞

on M

in the distribution sense, where on account of Lemma 5.2 we have ai ≥ 1, 1 ≤ i ≤ I.
Finally, we may then also assume that un → u∞ pointwise almost everywhere and
from (5.2) and Fatou’s lemma we obtain the bound

(5.8)

∫

M

|f0|e2u∞dµg0 ≤ lim sup
n→∞

∫

M

(|f0|+ λn)e
2undµg0 <∞.

Proposition 5.3. There holds ai ∈ {1, 2}, 1 ≤ i ≤ I, and the metric g∞ = e2u∞g0
on M∞ is complete.

Proof. By (5.7), (5.8) in a local conformal chart around each p
(i)
∞ = 0 for v∞(x) =

u∞(x) + v0(x) we have v∞(x) = ai log(1/|x|) + w∞(x), where

(5.9) −∆w∞ = f0e
2v∞ ∈ L1.

Invoking again [5], Theorem 1, given any p < ∞, on a sufficiently small ball B
around x = 0 we have e2|w∞| ∈ Lp(B). Also using that for a suitable constant
C > 0 we have C−1|x|2 ≤ |f0(x)| ≤ C|x|2 and hence that

(5.10) C−1|x|2(1−ai)e2w∞ ≤ |f0(x)|e2v∞ ≤ C|x|2(1−ai)e2w∞ ,

by Hölder’s inequality and (5.2) for any q > 1 we can estimate

(5.11)

∫

B

|x|
2(1−ai)

q dx =

∫

B

(

|x|2(1−ai)e2w∞
)

1
q e−

2w∞
q dx ≤ C

(

∫

B

e−
2w∞
q−1 dx

)

q−1
q
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where the right hand side is finite for suitably small B. Thus, we conclude that
ai ≤ 2, 1 ≤ i ≤ I.

If ai < 2, by (5.9), (5.10) for some q > 1 there holds ∆w∞ ∈ Lq(B) on a
sufficiently small ball B around x = 0, and w∞ ∈ L∞(B) by elliptic regularity. But
then for some c > 0 we have ev∞ ≥ c|x|−ai ≥ c|x|−1 near x = 0, and the metric
g∞ = e2u∞g0 = e2v∞geucl on B \ {0} is complete. Since by (5.8) the metric g∞
also has finite total curvature, from Huber [13], Theorem 10, then it follows that
ai ∈ N. But 1 ≤ ai < 2; hence we conclude that ai = 1, as claimed.

If ai = 2, using (5.10) from (5.9) we deduce that

−∆e−2w∞ + 4|∇w∞|2e−2w∞ = 2e−2w∞∆w∞ = −2f0|x|−4 ≤ C|x|−2.

Thus for any α > 0 there holds

−∆(|x|αe−2w∞) ≤ C|x|α−2 −
(

4|x|2|∇w∞|2 − 4αx · ∇w∞ + α2
)

|x|α−2e−2w∞ .

(5.12)

But by Young’s inequality for any a, b ∈ R we have 4ab ≤ a2 + 4b2. This allows to
estimate

4αx · ∇w∞ ≤ α2 + 4|x|2|∇w∞|2,
and from (5.12) we obtain the differential inequality

(5.13) −∆(|x|αe−2w∞) ≤ C|x|α−2

where the right hand side is in Lq(B) for some q = q(α) > 1. From elliptic regularity
we then infer that |x|αe−2w∞ ≤ C. Hence for any α > 0 there is a constant A > 0
such that near x = 0 we have the bound e2v∞ = |x|−4e2w∞ ≥ A|x|α−4, and again
the metric g∞ on B \ {0} is complete. �

Proof of Theorem 1.4 (completed). It remains to analyse the blow-up behavior near

each point p
(i)
∞ , 1 ≤ i ≤ I. Introducing local isothermal coordinates x ∈ B = BR(0)

around p
(i)
∞ = 0 and again letting vn(x) = un(x) + v0(x), with (xn) such that

vn(xn) = sup|x|≤R vn(x) as above, we first consider the case that λ2ne
2vn(xn) → ∞.

Rescale

wn(x) = vn(xn + rnx)− vn(xn)

on Dn = {x; |xn + rnx| < R}, where

r2nλne
2vn(xn) = 1.

Then r2n/λn → 0 as n→ ∞ and wn with wn ≤ 0 = wn(0) satisfies the equation

−∆wn = r2n(f0(xn + rnx) + λn)e
2(wn+vn(xn)) = hne

2wn on Dn,

where hn(x) = f0(xn + rnx)/λn + 1 ≤ 1, and

(5.14)

∫

Dn

e2wn dx = λn

∫

B

e2vn dx ≤ C.

Recalling (5.5) and that r2n/λn → 0, for a suitable subsequence we have uniform
convergence hn → h∞ to some constant limit h∞ = limn→∞ f0(xn)/λn +1 ∈ [0, 1].
In view of (5.14) from [5], Theorem 1, we conclude that a subsequence wn → w∞
locally uniformly, where w∞ ≤ 0 = w∞(0) solves the equation

−∆w∞ = h∞e
2w∞ on R2,
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with
∫

R

2 e
2w∞ dx < ∞. By the Chen-Li [9] classification of all solutions to this

equation we have h∞ > 0 and w∞ = log
(

1
1+h∞|x|2/4

)

. Thus after replacing rn by

2rn/
√
h∞ the assertion of Theorem 1.4, ii.a) follows.

We are thus left with the case when λ2ne
2vn(xn) ≤ C uniformly in n. Observe

that Lemma 5.2 also implies that 1 ≤ Cλ2ne
2vn(xn), so that |vn(xn) + log(λn)| ≤ C

in this case. Set r2n = λn and rescale

wn(x) = vn(rnx) + log(λn).

Then we have | supDn
wn| ≤ C. Moreover, wn satisfies the equation

−∆wn = hne
2wn on Dn,

where hn(x) = f0(rnx)/λn + 1 ≤ 1 in view of (5.5) and our choice r2n = λn for
a suitable subsequence now uniformly converges to the limit function h∞(x) =
1 + (Ax, x), where A = 1

2Hessf(0). As before, in view of (5.1) and (5.2) from [5],

Theorem 1, it follows that a subsequence wn → w∞ locally smoothly on R2, where

−∆w∞ = h∞e
2w∞ on R2,

with finite volume and finite total curvature

(5.15)

∫

R

2

e2w∞ dx <∞,

∫

R

2

|h∞|e2w∞ dx <∞.

The proof of Theorem 1.4 is complete. �

Remark 5.4. i) Solutions of the type arising in case ii.b) were studied by Cheng-
Lin [10]. Observe that (5.14) together with the precise characterization of h∞
allows to obtain a rather precise bound on |w∞(x)| for large |x|. Let x ∈ Dn with
B = Br(x) ⊂ Dn, where r = |x|/2 ≥ r0 for some sufficiently large r0 ≥ 1 so that
for some C > 0 we have hn ≤ −|x|2/C on B. Then from Jensen’s inequality we
can bound

2wn(x) ≤
2

πr2

∫

B

wndx ≤ log
( 1

πr2

∫

B

e2wndx
)

≤ log
( C

|x|4
∫

B

|hn|e2wndx
)

≤ C − 4 log |x|.

Coupling this observation with the results of Cheng-Lin [10] gives strong indication

that solutions of this type can only arise as blow-up limits near blow-up points p
(i)
∞

of multiplicity ai = 2, if they arise at all.
ii) Coupling the assertion (5.1) and Lemma 5.2 we see that our sequence (un)

can blow up in at most I = 4 points, regardless of how many maximum points the
function f0 possesses. Thus if there are more than 4 distinct maximum points pi
where f(pi) = 0, we may conjecture that Eλ for sufficiently small λ > 0 admits
multiple non-minimizing critical points.

iii) Prompted by our work Del Pino-Román [11] have obtained multiple branches
of bubbling solutions to (1.1) for f = fλ as λ ↓ 0 by matched asymptotic expansion,
with the asymptotics predicted by our Theorem 1.4, ii.a).
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6. Appendix

The proof of (5.3) given in [12] contains a small mistake, which, however, can
easily be repaired, as follows. Let Br(p) ⊂ M−. Fix a smooth cut-off function
0 ≤ ψ ≤ 1 supported in B = Br/2(p) and with ψ ≡ 1 on Br/4(p), and let η = ψ2.
Also let un be a solution of (1.1) for fn = f0+λn as above, where λn ↓ 0 as n→ ∞.

Multiplying equation (1.1) with η2u+n and integrating by parts, similar to [12],
formula (8), then we obtain the identity

(6.1)

∫

B

(

∇u+n · ∇(η2u+n ) + k0η
2u+n − fne

2u+
n η2u+n

)

dµg0 = 0.

Note that

(6.2) ∇u+n · ∇(η2u+n ) = |∇(ηu+n )|2 − |∇η|2(u+n )2.
(Ding-Liu mistakingly have a plus-sign on the right of this equation.) Moreover,
there exists ε > 0 such that for sufficiently large n ∈ N we have fn ≤ −ε on B.
Also bounding e2t ≥ t3 for t ≥ 0 like Ding-Liu, we then obtain

(6.3)

∫

B

(|∇(ηu+n )|2 + εη2(u+n )
4)dµg0 ≤

∫

B

(|∇η|2(u+n )2 − k0η
2u+n )dµg0 .

Recalling that η = ψ2 and using Young’s inequality to bound

|∇η|2(u+n )2 = 4|∇ψ|2(ψu+n )2 ≤ C(ψu+n )
2 ≤ 1

2
ε(ψu+n )

4 + C =
1

2
εη2(u+n )

4 + C

with a constant C = C(ε, ψ), and finally estimating

−k0η2u+n ≤ 1

2
εη2(u+n )

4 + C,

from (6.3) we obtain the uniform bound ‖∇(ηu+n )‖L2(B) ≤ C. By Poincaré’s in-
equality (5.3) then follows for large n ∈ N. For all remaining n ∈ N the bound
(5.3) already is a consequence of Lemma 3.1 and Lemma 4.3.
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