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Abstract
We establish fine bounds for subcritical best Sobolev constants of the embeddings

W
1,p
0 (Ω) ↪→ Lq(Ω), 1 ≤ q <

{
Np
N−p, 1 ≤ p < N

∞, p = N

where N ≥ p ≥ 1 and Ω is a bounded smooth domain in RN or the whole space. The Sobolev
limiting case p = N is also covered by means of a limiting procedure.
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Introduction
Best Sobolev constants are of great importance for the existence and nonexistence results to PDEs.
In fact, for the classical point of view, the critical Sobolev exponent p∗ yields the sharp threshold for
the existence and nonexistence of solutions to the related Euler-Lagrange equation. Moreover, recent
applications assume some sharp growth conditions which involve the explicit knowledge of subcrit-
ical best Sobolev constants [1, 3, 5]. Those approaches essentially extend the pertubation technique
of Brézis-Nirenberg results in which prescribed asymptotic behavior near zero is assumed. Therefore
a basic question arising from Sobolev embeddings is to compute the explicit value of best Sobolev
constants. The critical Sobolev constant S was found by Talenti and Aubin, which plays a fundamen-
tal role in the understanding of the lack of compactness in nonlinear problems. However, for the best
subcritical Sobolev constant

Ṡq(Ω) = inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖p
Lp(Ω)

‖u‖p
Lq(Ω)

,

there is no more sacle invariance in the case 1 ≤ q < p∗, which implies Ṡq(Ω) strictly depends on the
domain, as well as the definition

Sq(Ω) = inf
u∈W 1,p

0 (Ω)\{0}

‖∇u‖p
Lp(Ω)

+ ‖u‖p
Lp(Ω)

‖u‖p
Lq(Ω)

on the bounded domain. As pointed out above, the exact values are not explicit, as this would be
equivalent to find explicit solutions to nonlinear PDEs which are available just in very special cases,
like the Sobolev critical case. This motivates to look for suitably sharp bounds in the case 1 ≤ p ≤ N .

Main results
Denote the largest radius of the smooth domain Ω by

RΩ = sup {R : BR(x) ⊂ Ω, x ∈ Ω} .
Theorem 1. Let 1 < p < N and 1 ≤ q < p∗, the following hold:
1. If Ω ⊂ RN is bounded, then we have
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2. If Ω = RN ,
(i) when q = p, Sq(RN ) = 1;

(ii) when p < q < p∗,
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In the borderline case p = 1, we establish the sharp bounds as follows:
Theorem 2. Let p = 1 and 1 ≤ q < 1∗, the following hold:
1. If Ω ⊂ RN is bounded, then we have

S1 |Ω|
1
1∗−

1
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In the limiting case p = N , we have:
Theorem 3. Let p = N and q ≥ 1, the following hold:
1. If Ω ⊂ RN is bounded, then we have
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2. If Ω = RN ,
(i) when q = N , SN (RN ) = 1;

(ii) when q > N ,
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Furthermore, the asymptotic behavior of Sq(RN ) agree with Ṡq(Ω) is given by

lim
q→+∞

qN−1Sq(RN ) = ωNN
2N−1(N − 1)1−NeN−1.

Proof

Sobolev case 1 < p < N .

We choose the Moser-type function, as well as power-like function, as a test function to get the upper
bounds of Ṡq(Ω) and Sq(RN ) under the action

Ṡq(Ω) = λ
Np
(

1
p∗−

1
q

)
Ṡq(Ω

′),

where uλ(x) = u(λx), λ > 0 and Ω′ =
{
x ∈ RN : λx ∈ Ω

}
. For the lower bound of Sq(RN ), we

use the spherically symmetric rearrangement

u#(x) = u∗(ωN |x|N ), x ∈ Ω#,

where

u∗(s) = |{t ∈ [0,+∞) : µu > s}| = sup{t > 0 : µu > s}, s ∈ [0, |Ω|],

and then split the Lq norm in the whole space by

|| · ||p
Lq(RN)

= || · ||p
Lq(Bρ(0))

+ || · ||p
Lq(RN−Bρ(0))

, ρ > 0.

The estimate of first part is based on a radial Lemma established by the best Sobolev-type embedding
Lp
∗,∞(RN ) ↪→ D1,p(RN ) as follows:

Lemma 1. Let 1 < p < N , for any u# ∈ W 1,p(RN ), there holds

sup
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r
N
p∗u#(r) ≤ (ωNN)
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p
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)p−1
p

||∇u#||Lp(RN).

The estimate of second part is due to the decreasing of u#. Then we can get the lower bound of
Sq(RN ) by the Pólya-Szegö inequality.

Borderline case p = 1.

The Sobolev constant in borderline case can be regarded as a limiting Sobolev case as p → 1. We
prove a radial lemma:
Lemma 2. For any u# ∈ W 1,1(RN ), there holds

sup
r>0

rN−1u#(r) ≤ (ωNN)−1 ||∇u#||L1(RN).

We use Lemma 2 to recover the failure of Lemma 1 when p = 1, then following the similiar proce-
dure in Theorem 1, we prove Theorem 2.

Limiting case p = N .

The lower bound of Ṡq(Ω) relies on the following result proved in [2].
Proposition 1. For any u# ∈ W 1,N

0 (BR(0)), 0 < R <∞, there holds

sup
r≤R

[
u#(r)

(lnR− ln r)1− 1
N

]
≤ (ωNN)−

1
N ||∇u#||LN(BR(0)).

Moreover, since Proposition 1 does not hold in RN , we give the following Lemma on the whole
space:
Lemma 3. For any u# ∈ W 1,N (RN ), there is

sup
R>0
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(
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)N
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+ ||u#||N
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.

Hence we can get the lower bound of Sq(RN ) as Theorem 1. We also give the upper bound of Ṡq(Ω)

and Sq(RN ) by the Moser-type function. Finally, we apply the Stirling formula for the bounds of best
Sobolev constants to get the asymptotic behavior of Sobolev constants.
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