Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains

Alessio Falocchi[†], Filippo Gazzola[‡]

Dipartimento di Scienze Matematiche - Politecnico di Torino, Italy [‡] Dipartimento di Matematica - Politecnico di Milano, Italy

alessio.falocchi@polito.it, filippo.gazzola@polimi.it

Abstract

For the evolution Navier-Stokes equations in bounded 3D domains, it is well-known that the uniqueness of a solution is related to the existence of a regular solution. They may be obtained under suitable assumptions on the data and smoothness assumptions on the domain (at least C^2). With a symmetrization technique, we prove these results in the case of Navier boundary conditions in a wide class of merely Lipschitz domains of physical interest, that we call sectors.

Intuitive definition of sectors (*A*): There exists a bounded $C^{2,1}$ -domain Ω_m having at least $m \ge 0$ planes of symmetry; if m = 0, then Ω has $C^{2,1}$ -boundary ($\Omega_0 \equiv \Omega$).

• Sectors (B)**IDEA:** Ω can reconstruct a $C^{2,1}$ smoothly periodically extendable domain (in 1 or 2 or 3 directions), through a finite number $m \in \mathbb{N}$ of reflections

4. Sketch of the proof Theorem 1 Sectors (A) with m = 1

• Auxiliary smooth domain Ω_1 . We introduce an auxiliary problem on a $C^{2,1}$ domain (Ω_1 with $\omega_1 : z = 0$)

1. Introduction

Let T > 0 and let $\Omega \subset \mathbb{R}^3$ be a bounded, open, nonempty and connected domain. The evolution 3D Navier-Stokes equations

$u_t - \mu \Delta u + (u \cdot \nabla)u + \nabla p = f$, $\nabla \cdot u = 0$, in $\Omega \times (0, T)$, (1)

model the motion of an incompressible viscous fluid: u is its velocity, p its pressure, f is an external force, $\mu > 0$ is the kinematic viscosity. The equations (1) are complemented with some initial and boundary conditions, the most common being the homogeneous Dirichlet conditions (u = 0) on $\partial \Omega$), also called no-slip boundary conditions. In 1827, Navier [16] proposed conditions with friction, in which there is a stagnant layer of fluid close to the wall allowing a fluid to slip. The homogeneous Navier boundary conditions read

> $u \cdot \nu = (\mathbf{D}u \cdot \nu) \cdot \tau = 0 \quad \text{on } \partial\Omega \,,$ (2)

where ν is the outward normal vector to $\partial\Omega$ while τ is tangential. The boundary conditions (2) turn out to be appropriate in many physically relevant cases, see e.g. [6], in particular in presence of turbulent boundary layers [9]. The first contribution (in 1973) to (1)-(2) is due to Solonnikov-Scadilov [17]. For regularity results, see [1, 2, 4, 6, 7]. We put $Q_T := \Omega \times (0,T)$ and we consider (1) in Q_T , complemented with (2) and initial conditions:

 $\int u_t - \mu \Delta u + (u \cdot \nabla)u + \nabla p = f \quad \text{in } Q_T,$ in Q_T , $\nabla \cdot u = 0$ (3)on $\partial \Omega \times (0,T)$, $u \cdot \nu = (\mathbf{D}u \cdot \nu) \cdot \tau = 0$ in Ω , $u(x, y, z, 0) = u_0(x, y, z)$

Intuitive definition of sectors (B): There exists a smoothly periodically extendable domain Ω^m having at least $m \ge 0$ planes of symmetry; if m = 0, then Ω is smoothly periodically extendable ($\Omega^0 \equiv \Omega$).

Domains in Figure 1 are sectors, for a rigorous definition see [8].

Domains that are NOT sectors

2/5 of torus, Ω auto-intersecting, periodic extension not smooth...

3. Main results

Let the functional spaces

• \mathcal{E} -symmetrization definition. Let $Q_T^1 := \Omega_1 \times (0,T)$; a vector field $\Psi: Q_T^1 \to \mathbb{R}^3$ with components $\Psi_i = \Psi_i(x, y, z, t)$ (i = 1, 2, 3) and a function $q: Q_T^1 \to \mathbb{R}$ are \mathcal{E} -symmetric if for all $(x, y, z, t) \in Q_T^1$

 $\Psi_i(x, y, z, t) = \Psi_i(x, y, -z, t) \quad (i = 1, 2) \quad \Psi_3(x, y, z, t) = -\Psi_3(x, y, -z, t),$ q(x, y, z, t) = q(x, y, -z, t).

- \mathcal{E} -symmetrization of the unknowns. We \mathcal{E} -symmetrize on Ω_1 $u = (u_1, u_2, u_3)$ and p, denoting them \hat{u} and \hat{p} .
- *The key point.* If $\hat{u} \in C^1(\Omega_1)$ is \mathcal{E} -symmetric with respect to the plane containing ω_1 : z = 0 (versors $\nu = (0, 0, 1)$ and $\tau = (\tau_1, \tau_2, 0)$) then it satisfies automatically Navier Bcs on ω_1

$$\begin{aligned} \widehat{\boldsymbol{u}} \cdot \boldsymbol{\nu} &= u_3(x, y, 0, t) - u_3(x, y, 0, t) = 0 & \text{on } \omega_1 \\ \widehat{\boldsymbol{u}} \cdot \boldsymbol{\nu} &= 0 \quad \Rightarrow \quad \frac{\partial}{\partial \tau} (\widehat{\boldsymbol{u}} \cdot \boldsymbol{\nu}) = \nabla(\widehat{\boldsymbol{u}} \cdot \boldsymbol{\nu}) \cdot \tau = 0 & \text{on } \omega_1 \\ \nabla(\widehat{\boldsymbol{u}} \cdot \tau) \cdot \boldsymbol{\nu} &= \frac{\partial}{\partial z} (\widehat{\boldsymbol{u}} \cdot \tau) = [u_{1z}(x, y, 0, t) - u_{1z}(x, y, 0, t)]\tau_1 \\ &+ [u_{2z}(x, y, 0, t) - u_{2z}(x, y, 0, t)]\tau_2 = 0 & \text{on } \omega_1 \\ (\mathbf{D}\widehat{\boldsymbol{u}} \cdot \boldsymbol{\nu}) \cdot \tau &= \frac{1}{2} \nabla(\widehat{\boldsymbol{u}} \cdot \boldsymbol{\nu}) \cdot \tau + \frac{1}{2} \nabla(\widehat{\boldsymbol{u}} \cdot \tau) \cdot \boldsymbol{\nu} = 0 & \text{on } \omega_1 \end{aligned}$$

• *Functional spaces.* We introduce the functional spaces

 $H^{\mathcal{E}} := \{ v \in H(\Omega_1) : v \text{ is } \mathcal{E}-\text{symmetric} \}$ $V^{\mathcal{E}} := \{ v \in V(\Omega_1) : v \text{ is } \mathcal{E}-\text{symmetric} \}.$

- \mathcal{E} -symmetrization of the data. We \mathcal{E} -symmetrize the data $u_0 \in H$, $f \in L^2(Q_T)$, getting $\widehat{u}_0 \in H^{\mathcal{E}}$, $\widehat{f} \in L^2(Q_T^1)$.
- Stokes problem on Ω_1 . We consider as basis of $V^{\mathcal{E}}$ the eigenfunctions of the problem

 $\begin{aligned} -\Delta e + \nabla p &= \lambda e, \quad \nabla \cdot e = 0 & \text{in } \Omega_1, \\ e \cdot \nu &= (\mathbf{D} e \cdot \nu) \cdot \tau = 0 & \text{on } \partial \Omega_1. \end{aligned}$

• Weak solutions. We write approximate solutions and applying Galerkin method we prove the existence of symmetric weak solutions on Ω_1 , satisfying

 f^{T} \mathbf{f}^{T}

in which the pressure p is defined up to an additive constant so that we fixed its mean value $\int_{\Omega} p(t) = 0$ for all $t \in (0, T)$. We are interested in existence and, possibly, uniqueness of the solution of (3); it is well-known [18] that uniqueness is strictly related with the regularity of the solution. Under Dirichlet boundary conditions, this requires a C^2 boundary. Under Navier boundary conditions, Ω needs to have a $C^{2,1}$ -boundary, see [2, 4, 5], because of the appearance of derivatives in (2), whose traces are defined when $\partial \Omega \in C^{2,1}$. However, many domains of physical and engineering interest fail to be smooth. This is the case of a pipe bifurcation in a water grid, of a joint in a network of oil pipelines, of the section of a vein containing blood, of a halfball representing a drop of water on an impermeable table, of a half circular cylinder modeling a road tunnel, of a bottle containing wine, see Figure 1.

Figure 1: From left to right: a pipe bifurcation, a joint, a vein, a drop, a tunnel, a bottle.

The main purpose is to prove regularity and uniqueness results for (3) in a suitable class of merely Lipschitz domains (the *sectors*); this class includes all the domains in Figure 1. For the proofs we take advantage of the reflection method introduced in [11] for the Euler equations and subsequently applied in [3, 12] to the Navier-Stokes equations. The reflection is possible because we have Navier boundary conditions; under Dirichlet boundary conditions the same argument does not hold. With the very same technique, in the unforced case $f \equiv 0$ we also extend classical uniqueness results for small data [13, 10] and the Leray principle [14, 15].

 $H = \{ v \in L^2(\Omega); \nabla \cdot v = 0, v \cdot \nu = 0 \text{ on } \partial \Omega \}, \ V = H \cap H^1(\Omega),$

in which we denote by $v \cdot v$ the normal trace of v. By [18] we know that H is a closed subspace of $L^2(\Omega)$; therefore, V is a closed subspace of $H^1(\Omega)$. When the domain is a generic D, different from Ω , we specify H(D), V(D). We endow H(D) and V(D), respectively, with the scalar products and norms

$$\begin{split} (v,w)_D &:= \int_D v \cdot w \,, & \|v\|_{2,D}^2 &:= \int_D |v|^2 \,, \\ (\nabla v, \nabla w)_D &:= \int_D \nabla v : \nabla w \,, & \|\nabla v\|_{2,D}^2 &:= \int_D |\nabla v|^2 \,, \end{split}$$

so that H(D) and V(D) are Hilbert spaces; here $\nabla v : \nabla w$ is the scalar product between matrices.

Theorem 1

Let $\Omega \subset \mathbb{R}^3$ be a sector, T > 0, $f \in L^2(Q_T)$ and $u_0 \in H$; then (3) admits a (global) weak solution $u \in$ $L^{\infty}(0,T;H) \cap L^{2}(0,T;V)$. If $u_{0} \in V$, then there exists $T^* > 0$ satisfying

 $0 < \frac{C\mu^{3}}{\left(\mu \|\nabla u_{0}\|_{2,\Omega}^{2} + \|f\|_{2,Q_{T}}^{2}\right)^{2}} \le T^{*} \le T,$

with C > 0 depending only on Ω , such that the weak solution u of (3) is unique in $[0, T^*)$ and

 $u \in L^{\infty}(0, T^*; V)$ $u_t, \Delta u, \nabla p \in L^2(Q_{T^*}).$

$$\int_{0} \left\{ \mu(\nabla u(t), \nabla v)_{\Omega} + (u \cdot \nabla u(t), v)_{\Omega} \right\} \phi(t) dt - \int_{0} (u(t), v)_{\Omega} \phi'(t) dt = \phi(0)(u_{0}, v)_{\Omega} + \int_{0}^{T} (f(t), v)_{\Omega} \phi(t) dt \qquad \forall v \in V, \ \forall \phi \in \mathcal{D}[0, T).$$

- *Further regularity on* $[0, T^*)$. Taking $u_0 \in V$ (and, in turn $\widehat{u}_0 \in V^{\mathcal{E}}$), through some classical a priori bounds we infer the further regularity of the solution on $[0, T^*)$.
- Uniqueness of solution. We get the uniqueness of symmetric solution on $\Omega_1 \times [0, T^*)$, getting that its restriction to Ω solves (3).

References

- [1] P. Acevedo, C. Amrouche, C. Conca, A. Ghosh, Stokes and Navier-Stokes equations with Navier boundary condition, C.R. Math. Acad. Sci. Paris 357, 115-119 (2019)
- [2] C. Amrouche, A. Rejaiba, L^p-theory for Stokes and Navier-Stokes equations with *Navier boundary condition*, J. Diff. Eq. 256, 1515-1547 (2014)
- [3] G. Arioli, F. Gazzola, H. Koch, Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions, J. Math. Fluid. Mech. 23:49, (2021)
- [4] H. Beirão da Veiga, Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Diff. Eq. 9, 1079-1114 (2004)
- [5] H. Beirão da Veiga, L.C. Berselli, Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Diff. Eq. 246, 597-628 (2009)
- [6] L.C. Berselli, Some results on the Navier-Stokes equations with Navier boundary conditions, Riv. Math. Univ. Parma (N.S.) 1 1-75 (2010)
- [7] L.C. Berselli, An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: existence and uniqueness of various classes of solutions in the flat boundary case, Disc. Contin. Dyn. Syst. Ser. S 3, 199-219 (2010)
- [8] A. Falocchi, F. Gazzola, Regularity results for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains, to appear in Disc. Cont. Dyn. Syst. (2021)
- [9] G.P. Galdi, W.J. Layton, Approximation of the larger eddies in fluid motions. II. A model for space-filtered flow, Math. Models Meth. Appl. Sci. 10, 343-350 (2000)

2. Intuitive definition of *sectors*

• Sectors (A)**IDEA:** Ω can reconstruct a $C^{2,1}$ domain through a finite number $m \in \mathbb{N}$ of reflections

We also extend to sectors and conditions (2) some uniqueness and regularity results for the unforced equation that, by now, are classical statements under Dirichlet boundary conditions.

Theorem 2

Let $\Omega \subset \mathbb{R}^3$ be a sector and assume that $f \equiv 0$. There exists C > 0, depending only on Ω , such that if $u_0 \in V$ and

 $\|u_0\|_{2,\Omega} \|\nabla u_0\|_{2,\Omega} < C\mu^2,$

then the solution u of (3) satisfies $u \in L^{\infty}(\mathbb{R}^+; V)$ so that it is unique and global in time. Moreover, for any global weak solution u of (3), there ex-

ists $\mathcal{T} = \mathcal{T}(u) > 0$ such that

 $u_t, \Delta u, \nabla p \in L^2(\mathcal{T}, \infty; L^2(\Omega)).$ $u \in L^{\infty}(\mathcal{T}, \infty; V)$

- [10] G.P. Galdi, An Introduction to the Navier-Stokes Initial-Boundary Value Problem, In: G.P. Galdi, J.G. Heywood, R. Rannacher (eds), Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2000)
- [11] F. Gazzola, P. Secchi, Inflow-outflow problems for Euler equations in a rectangular cylinder, Nonlin. Diff. Eq. Appl. 8, 195-217 (2001)
- [12] F. Gazzola, G. Sperone, Steady Navier-Stokes equations in planar domains with obstacle and explicit bounds for unique solvability, Arch. Ration. Mech. Anal. 238, 1283-1347 (2020)
- [13] J.G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29, 639 (1980)
- [14] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63, 193-248 (1934)
- [15] J. Leray, Essai sur les mouvements plans d'un fluide visqueux que limitent des parois, J. Math. Pures Appl. 13, 331-419 (1934).
- [16] C.L.M.H. Navier, Mémoire sur les lois du mouvement des fluides, Mem. Acad. Sci. Inst. Fr. 2, 389-440 (1823)
- [17] V.A. Solonnikov, V.E. Scadilov, A certain boundary value problem for the stationary system of Navier-Stokes equations, Tr. Mat. Inst. Steklova 125, 196-210 (1973)
- [18] R. Temam, Navier-Stokes equations: Theory and numerical analysis, North-Holland Publ. Company (1979)