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Abstract

For the evolution Navier-Stokes equations in bounded 3D
domains, it is well-known that the uniqueness of a solu-
tion is related to the existence of a regular solution. They
may be obtained under suitable assumptions on the data
and smoothness assumptions on the domain (at least C2).
With a symmetrization technique, we prove these results in
the case of Navier boundary conditions in a wide class of
merely Lipschitz domains of physical interest, that we call
sectors.

1. Introduction

Let T > 0 and let Ω ⊂ R3 be a bounded, open, nonempty
and connected domain. The evolution 3D Navier-Stokes
equations

ut−µ∆u+(u·∇)u+∇p = f , ∇·u = 0 , in Ω×(0, T ) , (1)

model the motion of an incompressible viscous fluid: u is its
velocity, p its pressure, f is an external force, µ > 0 is the
kinematic viscosity. The equations (1) are complemented
with some initial and boundary conditions, the most com-
mon being the homogeneous Dirichlet conditions (u = 0
on ∂Ω), also called no-slip boundary conditions. In 1827,
Navier [16] proposed conditions with friction, in which there
is a stagnant layer of fluid close to the wall allowing a fluid
to slip. The homogeneous Navier boundary conditions read

u · ν = (Du · ν) · τ = 0 on ∂Ω , (2)

where ν is the outward normal vector to ∂Ω while τ is tan-
gential. The boundary conditions (2) turn out to be appro-
priate in many physically relevant cases, see e.g. [6], in
particular in presence of turbulent boundary layers [9]. The
first contribution (in 1973) to (1)-(2) is due to Solonnikov-
Scadilov [17]. For regularity results, see [1, 2, 4, 6, 7].
We put QT := Ω × (0, T ) and we consider (1) in QT , com-

plemented with (2) and initial conditions:
ut − µ∆u + (u · ∇)u +∇p = f in QT ,
∇ · u = 0 in QT ,
u · ν = (Du · ν) · τ = 0 on ∂Ω× (0, T ) ,
u(x, y, z, 0) = u0(x, y, z) in Ω ,

(3)

in which the pressure p is defined up to an additive constant
so that we fixed its mean value

∫
Ω p(t) = 0 for all t ∈ (0, T ).

We are interested in existence and, possibly, uniqueness
of the solution of (3); it is well-known [18] that unique-
ness is strictly related with the regularity of the solution.
Under Dirichlet boundary conditions, this requires a C2-
boundary. Under Navier boundary conditions, Ω needs to
have a C2,1-boundary, see [2, 4, 5], because of the appear-
ance of derivatives in (2), whose traces are defined when
∂Ω ∈ C2,1. However, many domains of physical and en-
gineering interest fail to be smooth. This is the case of a
pipe bifurcation in a water grid, of a joint in a network of oil
pipelines, of the section of a vein containing blood, of a half-
ball representing a drop of water on an impermeable table,
of a half circular cylinder modeling a road tunnel, of a bottle
containing wine, see Figure 1.

Figure 1: From left to right: a pipe bifurcation, a joint, a
vein, a drop, a tunnel, a bottle.

The main purpose is to prove regularity and uniqueness
results for (3) in a suitable class of merely Lipschitz domains
(the sectors); this class includes all the domains in Figure 1.
For the proofs we take advantage of the reflection method
introduced in [11] for the Euler equations and subsequently
applied in [3, 12] to the Navier-Stokes equations. The re-
flection is possible because we have Navier boundary con-
ditions; under Dirichlet boundary conditions the same ar-
gument does not hold. With the very same technique, in
the unforced case f ≡ 0 we also extend classical unique-
ness results for small data [13, 10] and the Leray principle
[14, 15].

2. Intuitive definition of sectors

• Sectors (A)

IDEA: Ω can reconstruct a C2,1 domain through a finite
number m ∈ N of reflections

Intuitive definition of sectors (A): There exists a bounded
C2,1-domain Ωm having at least m ≥ 0 planes of symmetry;
if m = 0, then Ω has C2,1-boundary (Ω0 ≡ Ω).

• Sectors (B)

IDEA: Ω can reconstruct a C2,1 smoothly periodically ex-
tendable domain (in 1 or 2 or 3 directions), through a finite
number m ∈ N of reflections

Intuitive definition of sectors (B): There exists a
smoothly periodically extendable domain Ωm having at least
m ≥ 0 planes of symmetry; if m = 0, then Ω is smoothly pe-
riodically extendable (Ω0 ≡ Ω).
Domains in Figure 1 are sectors, for a rigorous definition

see [8].

• Domains that are NOT sectors

2/5 of torus, Ω auto-intersecting, periodic extension not
smooth. . .

3. Main results

Let the functional spaces

H = {v ∈ L2(Ω);∇ · v = 0, v · ν = 0 on ∂Ω}, V = H ∩H1(Ω),

in which we denote by v ·ν the normal trace of v. By [18] we
know that H is a closed subspace of L2(Ω); therefore, V is
a closed subspace of H1(Ω). When the domain is a generic
D, different from Ω, we specify H(D), V (D). We endow
H(D) and V (D), respectively, with the scalar products and
norms

(v, w)D :=

∫
D
v · w , ‖v‖22,D :=

∫
D
|v|2 ,

(∇v,∇w)D :=

∫
D
∇v : ∇w , ‖∇v‖22,D :=

∫
D
|∇v|2 ,

so that H(D) and V (D) are Hilbert spaces; here ∇v : ∇w is
the scalar product between matrices.

Theorem 1
Let Ω ⊂ R3 be a sector, T > 0, f ∈ L2(QT ) and
u0 ∈ H; then (3) admits a (global) weak solution u ∈
L∞(0, T ;H) ∩ L2(0, T ;V ). If u0 ∈ V , then there exists
T ∗ > 0 satisfying

0 <
Cµ5(

µ‖∇u0‖22,Ω + ‖f‖22,QT

)2
≤ T ∗ ≤ T,

with C > 0 depending only on Ω, such that the weak
solution u of (3) is unique in [0, T ∗) and

u ∈ L∞(0, T ∗;V ) ut,∆u,∇p ∈ L2(QT ∗).

We also extend to sectors and conditions (2) some unique-
ness and regularity results for the unforced equation that,
by now, are classical statements under Dirichlet boundary
conditions.

Theorem 2
Let Ω ⊂ R3 be a sector and assume that f ≡ 0. There
exists C > 0, depending only on Ω, such that if u0 ∈ V
and

‖u0‖2,Ω‖∇u0‖2,Ω < Cµ2,

then the solution u of (3) satisfies u ∈ L∞(R+;V ) so that
it is unique and global in time.
Moreover, for any global weak solution u of (3), there ex-
ists T = T (u) > 0 such that

u ∈ L∞(T ,∞;V ) ut,∆u,∇p ∈ L2(T ,∞;L2(Ω)).

4. Sketch of the proof Theorem 1

Sectors (A) with m = 1

• Auxiliary smooth domain Ω1. We introduce an auxiliary problem
on a C2,1 domain (Ω1 with ω1 : z = 0)

• E−symmetrization definition. Let Q1
T := Ω1 × (0, T ); a vector field

Ψ : Q1
T → R3 with components Ψi = Ψi(x, y, z, t) (i = 1, 2, 3) and a

function q : Q1
T → R are E−symmetric if for all (x, y, z, t) ∈ Q1

T

Ψi(x, y, z, t) = Ψi(x, y,−z, t) (i = 1, 2) Ψ3(x, y, z, t) = −Ψ3(x, y,−z, t),
q(x, y, z, t) = q(x, y,−z, t).

• E−symmetrization of the unknowns. We E−symmetrize on Ω1

u = (u1, u2, u3) and p, denoting them û and p̂.
• The key point. If û ∈ C1(Ω1) is E−symmetric with respect to the

plane containing ω1 : z = 0 (versors ν = (0, 0, 1) and τ = (τ1, τ2, 0))
then it satisfies automatically Navier Bcs on ω1

û · ν = u3(x, y, 0, t)− u3(x, y, 0, t)= 0 on ω1

û · ν = 0 ⇒ ∂

∂τ
(û · ν) = ∇(û · ν) · τ = 0 on ω1

∇(û · τ ) · ν =
∂

∂z
(û · τ ) = [u1z(x, y, 0, t)− u1z(x, y, 0, t)]τ1

+ [u2z(x, y, 0, t)− u2z(x, y, 0, t)]τ2 = 0 on ω1

(Dû · ν) · τ =
1

2
∇(û · ν) · τ +

1

2
∇(û · τ ) · ν= 0 on ω1

• Functional spaces. We introduce the functional spaces

HE := {v ∈ H(Ω1) : v is E−symmetric}
V E := {v ∈ V (Ω1) : v is E−symmetric} .

• E−symmetrization of the data. We E−symmetrize the data u0 ∈ H,
f ∈ L2(QT ), getting û0 ∈ HE , f̂ ∈ L2(Q1

T ).
• Stokes problem on Ω1. We consider as basis of V E the eigenfunc-

tions of the problem{
−∆e +∇p = λe, ∇ · e = 0 in Ω1 ,

e · ν = (De · ν) · τ = 0 on ∂Ω1 .

• Weak solutions. We write approximate solutions and applying
Galerkin method we prove the existence of symmetric weak solu-
tions on Ω1, satisfying∫ T

0

{
µ(∇u(t),∇v)Ω + (u · ∇u(t), v)Ω

}
φ(t)dt−

∫ T

0

(u(t), v)Ω φ
′(t)dt =

φ(0)(u0, v)Ω +

∫ T

0

(f (t), v)Ωφ(t)dt ∀v ∈ V, ∀φ ∈ D[0, T ).

• Further regularity on [0, T ∗). Taking u0 ∈ V (and, in turn û0 ∈ V E),
through some classical a priori bounds we infer the further regularity
of the solution on [0, T ∗).

• Uniqueness of solution. We get the uniqueness of symmetric so-
lution on Ω1 × [0, T ∗), getting that its restriction to Ω solves (3).
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