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Motivation: the "dancing bridge" phenomenon

Many bridges manifested aerodynamic instability and uncontrolled oscilla-
tions leading to collapses. A spectacular example of such phenomenon was
given by the collapse of the Tacoma Narrows Bridge in 1940.

Zeros seen at the TNB: hand reproduction of Drawing 4 of the Federal Report.

The model: abstract framework

Let (H , (·, ·), ∥·∥) be a real Hilbert space. We consider the equation

utt + 𝛿ut + A2u + ||A𝜃/2u| |2A𝜃u = g. (1)

▶ u represents the vertical displacement of the deck of the bridge from its
rest position;

▶ A2 is a diagonal, self-adjoint, strictly positive operator, densely defined
onH ;

▶ 𝛿 > 0 is the damping coefficient;
▶ g ∈ C0(R+,H) models the action of the wind along the deck of the

bridge;
▶ 𝜃 ∈ [0, 1].

Some physical applications

We focus on the multiple intermediate piers model (𝜃 = 0):
utt + uxxxx + 𝛿ut + ∥u∥2L2(I )u = g(x, t), I := [−𝜋, 𝜋]
u(0) = u0 ∈ H 2(I ) ∩ H 1

0 (I ), ut (0) = u1 ∈ L2(I ),
u(−𝜋, t) = u(−𝜋b, t) = u(𝜋a, t) = u(𝜋, t) = 0, ∀t ≥ 0

“if the beam is displaced from its
equilibrium position in some point,
then this increases the resistance
to further displacements in all the
other points” [1].
In a different functional framework, the case 𝜃 = 1 models a stretching
nonlinearity [2].

[1] M. Garrione, F. Gazzola, Nonlinear equations for beams and degenerate plates with piers,
PoliMi Springer Briefs, 2019.
[2] S. Woionosky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl.
Mech. 17, pp. 35-36, 1950.

Objectives:

▶ To give a rigorous asymptotic finite-dimensional approximation of
this problem in order to study how the energy distributes among the
fundamental modes of the structure;

▶ To better understand the conditions under which suspension bridges
are resistant to the action of the wind.

Technical machinery

Let {en} be the set of eigenfunctions of A2 and let {𝛼n} be the correspond-
ing eigenvalues. For any family of indices J = {j1, . . . , jn}, we define the
projection

PJ : H → ⟨ej1, . . . , ejn⟩

u =

∞∑︁
h=1

uheh ↦→
n∑︁
r=1

ujrejr .

In particular, we denote by PN and QN := I − PN the orthogonal projections
onto ⟨e1, . . . eN⟩ and onto ⟨eN+1, . . . ⟩ respectively. In addition, for any k ∈ N
we introduce the projection ⊓k onto the orthogonal complement of ek given
by

⊓k := I − PkQk−1 : H → ⟨ek⟩⊥.

Finite-dimensional forcing term

Question: Let u be a weak solution of (1). Does g = PNg imply that u =

PNu?
Theorem: Let g be such that there are 𝜂 > 0 and N ∈ N such that

lim
t→∞

(∥QNg(t)∥ + ∥QNgt (t)∥)e𝜂t = 0. (2)

Then there exist M ∈ N with M ≥ N and 𝜂1 > 0 such that for any u weak
solution of (1)

lim
t→∞

(∥QMu(t)∥22 + ∥QMut (t)∥2)e𝜂1t = 0.

Approximating the forcing term

Question: What happens if we substitute g with a finite-dimensional ap-
proximation PJg? Does the solution of the problem

vtt + A2v + 𝛿vt + ||A𝜃/2v | |2A𝜃v = PJg (3)

provide a good approximation of u?

Theorem: There exists ḡ > 0 such that if g∞ := lim supt→∞ ∥g(t)∥ < ḡ,
then for every 𝜀 > 0 there exists a finite family of indices J depending on
𝛼1, g∞ and 𝜀 such that, if v solves (3), then

lim sup
t→∞

(∥u(t) − v(t)∥22 + ∥ut (t) − vt (t)∥2) ≤ 𝜀.

Moreover, if g satisfies (2), then there existsM ≥ N and 𝜂1 > 0 such that, if
J = {1, . . . ,M}, then

lim
t→∞

(∥PMu(t) − v(t)∥22 + ∥PMut (t) − vt (t)∥2)e𝜂1t = 0.

Remark: The smallness condition g∞ < ḡ can not be avoided. Indeed,
even in the ODE case large forcing terms lead to a chaotic dynamics and
the behaviour of the solutions can be quite complicated, even where the
forcing term is periodic in time

A particular case: g(t) = 𝔤 sin(𝜔t)

Motivated by the engineering literature[3], we now consider

utt + A2u + 𝛿ut + ||u| |2u = 𝔤 sin(𝜔t) (4)

and for the sake of simplicity we suppose that there existsM ≥ 0 such that
PM𝔤 = 𝔤. Let v be a solution of

vtt + A2v + 𝛿vt + ||v | |2v = ⊓k𝔤 sin(𝜔t) .
Question: How does the solution change as we neglect a single mode of
the forcing term?

Theorem: There exists 𝔤̄ such that if ∥𝔤∥ < 𝔤̄ then there is a constant
C > 0 depending on ∥𝔤∥ and 𝜔 such that, for any k ∈ {1, . . . ,M},

lim sup
t→∞

(∥⊓ku(t) − v(t)∥22 + ∥⊓kut (t) − vt (t)∥2) ≤
Cg4k

((𝛼k − 𝜔2)2 + 𝛿2𝜔2)2,

where gk := (𝔤, ek).

[3] Eurocode 1, Actions on structures. Parts 1-4: General actions - Wind actions, The
European Union Per Regulation 305/2011, Directive 98/34/EC & 2004/18/EC.

An important estimate

The proof of this
result relies upon
an estimate on the
asymptotic amplitude
of each mode.
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How the energy distributes among the modes?

Let 0 < 𝜂 < 1. We say that a weak solution of (4) has a family S of asymp-
totic 𝜂−prevailing modes if

lim sup
t→∞

∥QSu∥22 < 𝜂4 lim sup
t→∞

∥PSu∥22.

The previous results allow us to study the number of 0.1−prevailing modes
as the position of the piers varies.

Conclusion
According to the model considered, asymmetric suspension bridges are
more stable than suspension bridges where the piers are symmetric with
respect to the center of the deck.
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