

FACULTY OF SCIENCES

THE SINGULAR LIMIT OF NONLOCAL CONSERVATION LAWS TO LOCAL CONSERVATION LAWS

Giuseppe Maria Coclite Jean-Michel Coron Nicola De Nitti Alexander Keimer Lukas Pflug Polytechnic University of Bari
Université Pierre et Marie Curie
FAU Erlangen-Nürnberg, Chair for Dynamics, Control and Numerics (AvH Professorship)
UC Berkeley, Institute of Transportation Studies
FAU Erlangen-Nürnberg, ZISC and Chair for Applied Mathematics (Continuous Optimization)

Nonlocal conservation laws and applications

Nonlocal conservation laws have been intensively studied over the last decade, in particular with reference to applications in traffic flow, supply chains, pedestrian flow/crowd dynamics, opinion formation, chemical engineering, sedimentation, conveyor belts, etc.

Numerical illustrations

We present some numerical simulations **[5, Section 5]** illustrating the convergence. We simulate not only the case of exponential kernels **(top)**, but we further demonstrate that

We aim to close the gap between local and nonlocal modeling of phenomena governed by conservation laws.

For a nonlocal parameter $\eta \in \mathbb{R}_{>0}$ and time horizon $T \in \mathbb{R}_{>0}$, we consider the nonlocal conservation law

 $\begin{cases} \partial_t q_\eta(t,x) + \partial_x \left(\lambda \left(W_\eta[q_\eta](t,x) \right) q_\eta(t,x) \right) = 0, & (t,x) \in (0,T) \times \mathbb{R}, \\ q_\eta(0,x) = q_0(x), & x \in \mathbb{R}, \end{cases}$

with

 $W_{\eta}[q_{\eta}](t,x) := \frac{1}{\eta} \int_{x}^{\infty} \exp(\frac{x-y}{\eta}) q_{\eta}(t,y) \,\mathrm{d}y, \quad (t,x) \in (0,T) \times \mathbb{R}.$

Let $q: (0,T) \times \mathbb{R} \to \mathbb{R}$ be the entropy solution of the corresponding local conservation law

 $\begin{cases} \partial_t q(t,x) + \partial_x \big(\lambda \big(q(t,x) \big) q(t,x) \big) = 0, & (t,x) \in (0,T) \times \mathbb{R}, \\ q(0,x) = q_0(x), & x \in \mathbb{R}. \end{cases}$

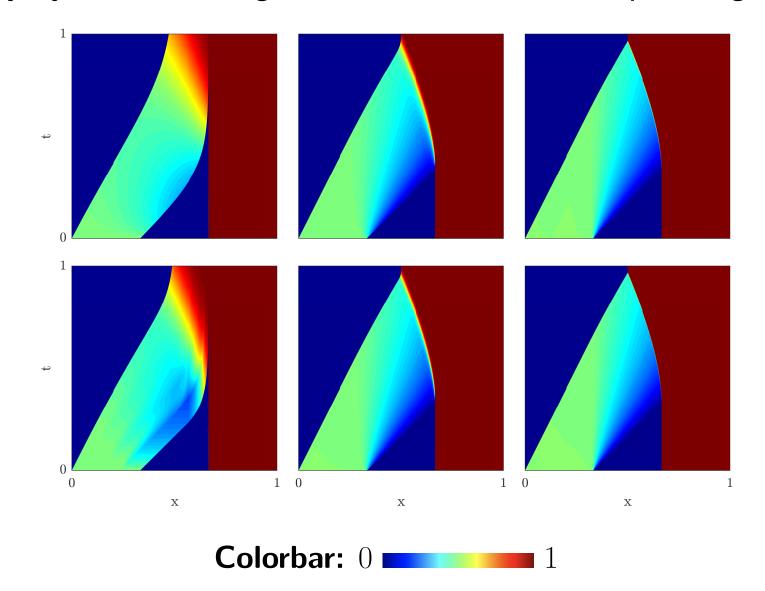
We assume $q_0 \in L^{\infty}(\mathbb{R}; \mathbb{R}_{\geq 0}) \cap TV(\mathbb{R})$ and $\lambda \in W^{1,\infty}_{loc}(\mathbb{R}): \lambda'(s) \leq 0$ for $s \in (\text{ess-inf}_{x \in \mathbb{R}} q_0(x), \|q_0\|_{L^{\infty}(\mathbb{R})}).$

We are interested in proving that q_{η} converges to q as $\eta \to 0$, i.e. when the nonlocal weight approaches a Dirac distribution.

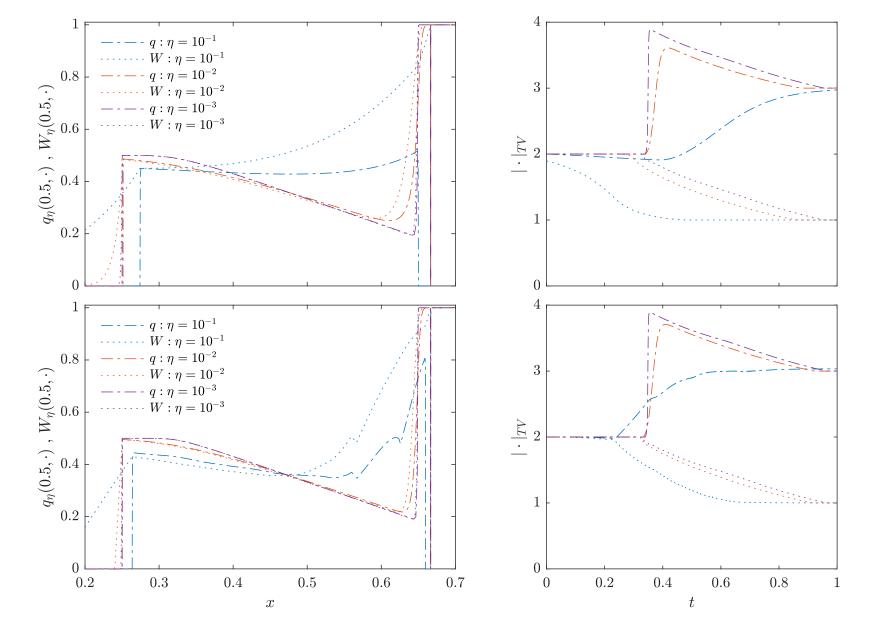
Such "nonlocal-to-local" convergence result provides a way of defining the entropy admissible solutions of local conservation laws as limits of weak solutions to nonlocal conservation laws (which do not typically require entropy conditions for uniqueness, see **[10,11]**).

The first numerical evidence for such convergence was shown in **[1]** and previous results have been obtained in **[3,4,6,8,9,12]** (see **[2]** for a more detailed literature review).

the result should still hold for general nonlocal kernels by using as "worst case" a constant kernel $W_{\eta}[q_{\eta}](t,x) := \frac{1}{\eta} \int_{x}^{x+\eta} q_{\eta}(t,y) \,\mathrm{d}y$ (bottom). As initial datum, we take the function $q_{0} := \frac{1}{2}\chi_{(0,\frac{1}{3})} + \chi_{\mathbb{R}_{>\frac{2}{3}}}$. From left to right η is decreasing, $\eta \in \{10^{-1}, 10^{-2}, 10^{-3}\}$. The rightmost figure is "by eye" not distinguishable from the corresponding local solution.



Next, we illustrate the solution of the nonlocal balance law with exponential kernel (**top left**) and constant kernel (**bottom left**) supplemented by the piecewise constant initial datum $q_0 := \frac{1}{2}\chi_{(0,\frac{1}{3})} + \chi_{\mathbb{R}_{>\frac{2}{3}}}$ and its corresponding nonlocal term plotted for t = 0.5 and $\eta \in \{10^{-1}, 10^{-2}, 10^{-3}\}$. On the **top right** and **bottom right**, we also show the evolution of the corresponding total variations.



Main theorem

For every $\eta > 0$, there exists a unique weak solution $q_{\eta} \in C([0,T]; L^{1}_{loc}(\mathbb{R})) \cap L^{\infty}((0,T); L^{\infty}(\mathbb{R})) \cap L^{\infty}((0,T); TV(\mathbb{R}))$ of the nonlocal conservation law and the following maximum principle is satisfied

ess-inf $q_0(x) \leq q_\eta(t,x) \leq ||q_0||_{L^{\infty}(\mathbb{R})}$ a.e. $(t,x) \in (0,T) \times \mathbb{R}$.

Moreover, the following limits hold:

 $\lim_{\eta \to 0} \|q_{\eta} - q^*\|_{C([0,T];L^1_{loc}(\mathbb{R}))} = 0 \text{ and } \lim_{\eta \to 0} \|W_{\eta} - q^*\|_{C([0,T];L^1_{loc}(\mathbb{R}))} = 0,$

where q^* is the entropy solution of the local conservation law.

Key ideas of the proof

- Existence and uniqueness for η > 0 (without entropy condition) were obtained in [10] by a fixed-point argument.
- ► We observe that the nonlocal term $W_{\eta}[q_{\eta}]$ is Lipschitz continuous and satisfies the following transport equation with nonlocal source in the strong sense

 $\partial_t W_\eta + \lambda(W_\eta) \partial_x W_\eta = -\frac{1}{\eta} \int_x^\infty \exp(\frac{x-y}{\eta}) \lambda'(W_\eta(t,y)) \partial_y W_\eta(t,y) W_\eta(t,y) \, \mathrm{d}y,$ $W_\eta(0,x) = \frac{1}{\eta} \int_x^\infty \exp(\frac{x-y}{\eta}) q_0(y) \, \mathrm{d}y,$ for $(t,x) \in (0,T) \times \mathbb{R}.$

From this transport equation, we deduce the following **total variation bound in the**

Related works and open problems

- Is it possible to obtain the same convergence results for kernels which are not of exponential type (see [5, Section 6])? See the simulations above for constant kernels and the ones in [12, Section 7].
- What is the relationship between the controllability of nonlocal conservation laws and the controllability of the corresponding local equations? In case η > 0, recent controllability results have been obtained in [2].
- ► Nonlocal-to-local singular limits with artificial viscosity: [6,8].
- ► Well-posedness of nonlocal conservation laws with rough kernels: [7].

Short bibliography

[1] P. Amorim, R. M. Colombo, and A. Teixeira. ESAIM Math. Model. Numer. Anal., 49(1):19–37, 2015. [2] A. Bayen, J.-M. Coron, N. De Nitti, A. Keimer, and L. Pflug. To appear in Vietnamese Journal of Mathematics. Preprint: https://cvgmt.sns.it/paper/4807/. [3] A. Bressan and W. Shen. Arch. Ration. Mech. Anal., 237(3):1213–1236, 2020. [4] A. Bressan and W. Shen. Preprint, 2020: https://arxiv.org/abs/2011.05430. [5] G. M. Coclite, J.-M. Coron, N. De Nitti, A. Keimer, and L. Pflug. Preprint, 2020: https://cvgmt.sns.it/paper/4969/. [6] G. M. Coclite, N. De Nitti, A. Keimer, and L. Pflug. Nonlinear Analysis, 211:112370, 2021. **[7]** G. M. Coclite, N. De Nitti, A. Keimer, and L. Pflug. Preprint, 2021: https://cvgmt.sns.it/paper/5034/. [8] M. Colombo, G. Crippa, and L. V. Spinolo. Arch. Ration. Mech. Anal., 233(3):1131–1167, 2019. [9] M. Colombo, G. Crippa, E. Marconi, L. V. Spinolo. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2020. [10] A. Keimer and L. Pflug. Journal of Differential Equations, 263:4023–4069, 2017. [11] A. Keimer, L. Pflug, and M. Spinola. SIAM J. Math. Anal., 50(6):6271-6306, 2018. [12] A. Keimer and L. Pflug. J. Math. Anal. Appl., 475(2):1927–1955, 2019.

spatial component of W_η , uniformly in η :

$|W_{\eta}(t,\cdot)|_{TV(\mathbb{R})} \leq |W_{\eta}(0,\cdot)|_{TV(\mathbb{R})} \leq |q_0|_{TV(\mathbb{R})} \ \forall \eta \in \mathbb{R}_{>0} \ \forall t \in [0,T].$

- ► Using this uniform bound, we deduce the **compact embedding** of the set $(W_{\eta})_{\eta \in \mathbb{R}_{>0}} \subseteq C([0,T]; L^{1}_{loc}(\mathbb{R}))$ into the space $C([0,T]; L^{1}_{loc}(\mathbb{R}))$.
- To show that the limit q* is the unique entropy solution of the local conservation law we rely on a minimal entropy condition due to Panov (which requires using only a single convex entropy-entropy flux pair) as in [4].

caa-avh.nat.fau.eu

Alexander von Humboldt Stiftung/Foundation