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Nonlocal conservation laws and applications
Nonlocal conservation laws have been intensively studied over the last decade, in particular
with reference to applications in traffic flow, supply chains, pedestrian flow/crowd dynamics,
opinion formation, chemical engineering, sedimentation, conveyor belts, etc.

We aim to close the gap between local and nonlocal modeling of phenomena governed by
conservation laws.

For a nonlocal parameter η ∈ R>0 and time horizon T ∈ R>0, we consider the nonlocal
conservation law{

∂tqη(t, x) + ∂x
(
λ
(
Wη[qη](t, x))qη(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

qη(0, x) = q0(x), x ∈ R,
with

Wη[qη](t, x) :=
1
η

∫ ∞
x

exp(x−yη )qη(t, y) dy, (t, x) ∈ (0, T )× R.

Let q : (0, T )× R→ R be the entropy solution of the corresponding local conservation law{
∂tq(t, x) + ∂x

(
λ
(
q(t, x)

)
q(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

q(0, x) = q0(x), x ∈ R.

We assume q0 ∈ L∞(R;R≥0) ∩ TV (R) and λ ∈ W 1,∞
loc (R) : λ′(s) ≤ 0 for

s ∈
(
ess- infx∈R q0(x), ‖q0‖L∞(R)

)
.

We are interested in proving that qη converges to q as η → 0, i.e. when the nonlocal weight
approaches a Dirac distribution.

Such “nonlocal-to-local” convergence result provides a way of defining the entropy admissible
solutions of local conservation laws as limits of weak solutions to nonlocal conservation laws
(which do not typically require entropy conditions for uniqueness, see [10,11]).

The first numerical evidence for such convergence was shown in [1] and previous results have
been obtained in [3,4,6,8,9,12] (see [2] for a more detailed literature review).

Main theorem
For every η > 0, there exists a unique weak solution
qη ∈ C

(
[0, T ];L1

loc(R)
)
∩ L∞((0, T );L∞(R)) ∩ L∞((0, T );TV (R)) of the nonlocal

conservation law and the following maximum principle is satisfied

ess- inf
x∈R

q0(x) ≤ qη(t, x) ≤ ‖q0‖L∞(R) a.e. (t, x) ∈ (0, T )× R.

Moreover, the following limits hold:

lim
η→0
‖qη − q∗‖C([0,T ];L1

loc(R)) = 0 and lim
η→0
‖Wη − q∗‖C([0,T ];L1

loc(R)) = 0,

where q∗ is the entropy solution of the local conservation law.

Key ideas of the proof
I Existence and uniqueness for η > 0 (without entropy condition) were obtained in

[10] by a fixed-point argument.

I We observe that the nonlocal term Wη[qη] is Lipschitz continuous and satisfies
the following transport equation with nonlocal source in the strong sense

∂tWη + λ(Wη)∂xWη = −1
η

∫ ∞
x

exp(x−yη )λ′(Wη(t, y))∂yWη(t, y)Wη(t, y) dy,

Wη(0, x) =
1
η

∫ ∞
x

exp(x−yη )q0(y) dy,

for (t, x) ∈ (0, T )× R.

I From this transport equation, we deduce the following total variation bound in the
spatial component of Wη, uniformly in η:

|Wη(t, ·)|TV (R) ≤ |Wη(0, ·)|TV (R) ≤ |q0|TV (R) ∀η ∈ R>0 ∀t ∈ [0, T ].

I Using this uniform bound, we deduce the compact embedding of the set(
Wη

)
η∈R>0

⊆ C
(
[0, T ];L1

loc(R)
)

into the space C
(
[0, T ];L1

loc(R)
)
.

I To show that the limit q∗ is the unique entropy solution of the local conservation law
we rely on a minimal entropy condition due to Panov (which requires using only a single
convex entropy-entropy flux pair) as in [4].

Numerical illustrations
We present some numerical simulations [5, Section 5] illustrating the convergence.

We simulate not only the case of exponential kernels (top), but we further demonstrate that
the result should still hold for general nonlocal kernels by using as “worst case” a constant
kernel Wη[qη](t, x) :=

1
η

∫ x+η
x qη(t, y) dy (bottom). As initial datum, we take the function

q0 :=
1
2χ(0,13)

+ χR
>2
3

. From left to right η is decreasing, η ∈
{
10−1, 10−2, 10−3

}
. The

rightmost figure is “by eye” not distinguishable from the corresponding local solution.

Colorbar: 0 1

Next, we illustrate the solution of the nonlocal balance law with exponential kernel (top left)
and constant kernel (bottom left) supplemented by the piecewise constant initial datum
q0 :=

1
2χ(0,13)

+ χR
>2
3

and its corresponding nonlocal term plotted for t = 0.5 and

η ∈ {10−1, 10−2, 10−3}. On the top right and bottom right, we also show the evolution of
the corresponding total variations.

Related works and open problems
I Is it possible to obtain the same convergence results for kernels which are not of

exponential type (see [5, Section 6])? See the simulations above for constant kernels
and the ones in [12, Section 7].

I What is the relationship between the controllability of nonlocal conservation laws and the
controllability of the corresponding local equations? In case η > 0, recent controllability
results have been obtained in [2].

I Nonlocal-to-local singular limits with artificial viscosity: [6,8].

I Well-posedness of nonlocal conservation laws with rough kernels: [7].
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