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Functions attaining the maximum value on the boundary: affine
functions

Which functions u : Ω ⊂ IRn → IR attain the maximum value in Ω on the
boundary ∂Ω of an arbitrary connected bounded set Ω , i.e.

max
Ω

u = max
∂Ω

u ?

Such functions u satisfy the Maximum Principle.

In dimension n = 1:

I u monotone non decreasing satisfy both Maximum and Minimum Principle
[trivial !]

I u convex satisfy only the Maximum Principle [elementary proof]

I u concave satisfy only the Minimum Principle

.
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A first, trivial example in dimension n > 1 is given by affine functions

u(x) = p · x + b

on any bounded Ω. If p 6= 0 since ∇u ≡ p in Ω then u does not have interior
critical points; hence a maximum point (which is attained by the Weierstrass
Theorem) necessarily lies on the boundary (if p = 0 then u is constant and the
same is trivially true). For the same reason also minima are attained at the
boundary (the Minimum Principle)

Observe that a function may have interior critical points and satisfy the
Maximum Principle. Example:
u(x1, x2) = x2

1 − x2
2 on the unit ball of IR2 has (0, 0) has its unique critical point

(a saddle) while its maximum is attained at the boundary point (1, 0).
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Functions attaining the maximum value on the boundary: Linear
Programming

The Linear Programming problem is maxP p · x where P is a closed polyhedron
defined by a system of affine inequalities Ax ≤ b
Assume, for simplicity that the polyhedron is 2-dimensional, non empty and
bounded.
So the maximum of p · x is attained at the boundary of P which is the union of
the edges with vertices at points x1, ..., xk .
It is easy then to conclude that

max
P

p · x = max[p · x1, ..., p · xk ]

This argument holds in any dimension n and it shows that the Linear
Programming problem can be reduced to a comparison between the values of
the objective function at a finite number (perhaps very large) number of
points. It can be of course quite hard to determine the coordinates of the
vertices (the Simplex Algorithm can be used at this purpose)
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Functions attaining the maximum value on the boundary: convex
functions

It seems to me that the notion of convex function is just as fundamental as
positive function or increasing function. If am not mistaken in this, the notion
ought to find its place in elementary expositions of the theory of real functions
J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs
moyennes, Acta Math., 30 (1906), 175-193.

A big jump in the generality is to look at convex functions. [picture with secant
lines] i.e.functions such that for any pair x , y in a convex set Ω

u(x)− u(y) ≥ u(y + λ(x − y))− u(y)

λ

for all λ ∈ [0, 1].
This definition implies, for u ∈ C 1, that u(x)− u(y) ≥ ∇u(y) · (x − y);
therefore any possible interior critical point must be a minimum.
If Ω is bounded then the maximum point of u on Ω (again, it exists by the
Weierstrass) Theorem lies necessarily on ∂Ω

Remark.
The Minimum Principle holds of course for concave functions. Both the
Maximum and the Minimum Principles holds for affine functions which are
simultaneously convex and concave.
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Functions attaining the maximum value on the boundary: convex
functions

It is worth to observe in view of further developments that if u is convex and
C 2 then its Hessian matrix ∇2u(x) is positive semidefinite i.e.

∇2u(x)ξ · ξ ≥ 0

On this basis a different proof of the previous result is as follows:
let uε(x) := u(x) + ε|x |2 with ε > 0. Then

∇2uε(x) = ∇2u(x) + 2εI > 0

so that
∇2uε(x)ξ · ξ ≥ 2ε|ξ|2

for any x .
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Functions attaining the maximum value on the boundary: convex
functions

Assume that uε attains its maximum at an interior point x ; then by elementary
calculus ∇2uε(x)ξ · ξ ≤ 0, in contradiction with the above.
Hence

maxΩ uε = max∂Ω uε
Since Ω is bounded there exists R > 0 such that |x | ≤ Rfor any x ∈ Ω so that

uε(x) = u(x) + ε|x |2 ≤ u(x) + εR2

for any x ∈ Ω.
It follows that

u(x) + ε|x |2 ≤ max
Ω

uε = max
∂Ω

uε ≤ εR2 + max
∂Ω

u

Let ε→ 0 to obtain u(x) ≤ max∂Ω u for any x ∈ Ω and, maxΩ u = max∂Ω u
due to the fact that

max
Ω

u = max[sup
Ω

u; max
∂Ω

u]
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Functions attaining the maximum value on the boundary: an
example in infinite dimensions

Remark.
If X is a Banach space, its dual norm ||L||X ′ =: sup||x||≤1 |L(x)| (L linear
continuos functional on X ) is a convex functional on X ′.
It is easy to show, using the linearity of L that

sup
||x||=1

L(x) ≥ sup
||x||≤1

L(x)

so that the dual norm satisfy a form of the Maximum Principle.
The same property holds for positively homogeneous functionals of degree
α ≥ 1
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Functions attaining the maximum value on the boundary:
subharmonic functions

In dimension n = 1 convex functions are characterized by u′′(x) ≥ 0 .
A naural generalization of this condition in higher dimensions is the positive
semidefinitness of the Hessian matrix:

(SDP) ∇2u(x)ξ · ξ ≥ 0

This condition characterizes C 2 convex functions and we have seen that those
functions satisfy the Maximum Principle.
Such a condition implies of course that the diagonal entries of ∇2u(x) are ≥ 0
and, as a further consequence that

(SH) Tr(∇2u(x)) =:
n∑
1

uxi xi (x) = ∆u(x) ≥ 0

Functions u ∈ C 2 satisfying the above condition are the subharmonic functions.
So:

C 2convex functions are subharmonic
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An elementary subharmonic which is not convex:

u(x1, x2) = 2x2
1 − x2

2 ; ∆u ≡ 1
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Functions attaining the maximum value on the boundary:
subharmonic functions

It is then evident the relevance of the next result showing that the Maximum
Principle holds under condition (SH), which is weaker than (SDP):

Theorem.
If Ω is an open bounded subset of IRnand u ∈ C 2(Ω)

⋂
C(Ω) is subharmonic,

then
(PM) max

Ω
u = max

∂Ω
u

In particular, sign propagates from the boundary to the interior:

u ≤ 0 on ∂Ω implies u ≤ 0 in Ω
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Functions attaining the maximum value on the boundary:
subharmonic functions

The proof is very similar to the one of the Maximum Principle for convex
functions: consider the same approximating functions uε and check that

∆uε(x) = ∆u(x) + 2nε > 0

since u is subaharmonic.The global maximum points of uε cannot be located at
an interior point of Ω since in that case we would have ∇2uεξ · ξ ≤ 0 at this
point and, consequently,

Tr(∇2uε) = ∆uε ≤ 0

at those points, and this is a contradiction.

The conclusion is achieved in the same way as in the result for convex function,
using the compactness of Ω.
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Functions attaining the maximum value on the boundary: quadratic
polynomials

A quadratic polynomial is a function of the form

u(x) =
1

2
Qx · x + p · x + c

where Q is a symmetric n × n matrix, p a vector in IRn, c a real number.
The Hessian matrix of u is then the matrix Q.
Look, in particular, to the case Q is diagonal, i.e. Q = diagλi where λi are the
eigenvalues of Q.
A quadratic polynomial is subharmonic if

Tr(Q) =
∑

λ+
i +

∑
λ−i ≥ 0

where λ+
i ,λ−i are, respectively, the positive and the negative eigenvalues of Q.

As we shall see next the reverse inequality holds for superharmonic quadratic
polynomials.
For harmonics, which means ∆u ≡ 0, there is instead a compensation between
positive and negative eigenvalues.
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Functions attaining the maximum value on the boundary: quadratic
polynomialsi

A quadratic polynomial u is a convex function if and only if Q is positive
semidefinite. In this case all eigenvalues of Q are ≥ 0 and
TrQ = Tr∇2u(x) = ∆u(x) ≥ 0 for all x , i.e. u is subharmonic.

In light of this, convex quadratic polynomials can be seen as an extreme case of
subharmonic quadratic polynomials.
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Functions attaining both the maximum and the minimum value on
the boundary: harmonic functions

Let us conclude by introducing the superharmonics functions v in Ω as those
verifying

∆v(x) ≤ 0

for any x ∈ Ω (i.e. u := −v is subharmonic) .
Obiously, superharmonic satisfy the Minimum Principle:

min
Ω

u = min
∂Ω

u

Finally, harmonic functions are those which are simultaneously sub and
superharmonic, namely

∆u(x) = 0

For such functions both the Maximum and the Minimum Principle hold:

min
Ω

u = min
∂Ω

u ≤ max
∂Ω

u = max
Ω

u
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Functions attaining the maximum and the minimum value on the
boundary: harmonics

Some examples of harmonic functions

u(x) = (x2
1 + ...+ x2

n )1−n/2, x = (x1, ..., xn) ∈ Rn \ 0

u(x1, x2) = ex1 sin x2

(and, more generally, the real and the imaginary part of an holomorphic
function on the complex plane)

log(x2
1 + x2

2 ), x ∈ R2 \ 0

1

(x2
1 + x2

2 + x2
3 )1/2
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The Dirichlet problem

The function

u(x) =
R2 − |x |2

2n

is a solution of the Dirichlet problem

∆u = −1, x ∈ BR(0) u = 0, x ∈ ∂BR(0)

It is obviously superharmonic; easy to check that min u∂BR = min uBR = 0.

Function u has a probabilistic interpretation: first exit time from BR of the
Brownian motion starting at x ∈ Ω.

dwt = 1,w0 = x

The first exit time of the basic deterministic motion dxt = 1, x0 = x is instead
u(x) = R − |x |. This function solves the eiconal nonlinear Dirichlet problem

|∇u(x)| = 1, x ∈ BR(0) u = 0, x ∈ ∂BR(0)
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The Dirichlet problem:
maximum and minimum principles imply uniqueness

Let u,v be two solutions of the Dirichlet problem

∆w = f , x ∈ Ω w = g , x ∈ ∂Ω

Then, by linearity,

∆(u − v) = 0 x ∈ Ω (u − v) = 0, x ∈ ∂Ω

By the Maximum and Minimum Principle for the harmonic function w := u− v

minw∂Ω = minwΩ = 0 = maxw∂Ω = maxwΩ

Hence, w ≡ 0 i.e. u ≡ v
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Perron’s method for the Dirichlet problem

A simple remark, which explains the terminology subharmonic, is the
Comparison Principle between subharmonic and harmonic functions:
if u and v are C 2(Ω) and such that

∆u ≥ 0 ∆v = 0 , u ≤ v on∂Ω

then u ≤ v in Ω.
Indeed, w := u − v satisfies by linearity ∆w ≥ 0 in Ω and w ≤ 0 on ∂Ω.
Hence, by the Maximum Principle for subharmonics, w ≤ 0 that is u ≤ v .
It is natural on this basis to ask if the Perron pointwise sup envelope defined
by

v(x) := sup[u(x) : u subharmonic in Ω, u = g on ∂Ω] ,

is a solution of the Dirichlet problem

∆v = 0, x ∈ Ω v = g , x ∈ ∂Ω

This is in fact true; the proof is non trivial since one has to prove pointwise sup
envelope is C 2, and satisfies the pde at all points see [GT].
On the other hand, the verifications needed to prove that the Perron envelope
is a solution in the weak viscosity sense are much easier.
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Some important properties of harmonic functions: mean value and
Liouville theorems

An important mean value property is satisfied by harmonic functions:

u(y) =
1

|B|

∫
B

u(z)dz

for any y ∈ B. If u is just subharmonic the inequality holds
u(y) ≤ 1

|B|

∫
B
u(z)dz while for superharmonics u(y) ≥ 1

|B|

∫
B
u(z)dz .

These properties have several important consequences. Let us just mention
here the elegant proof due to E. Nelson of the classical Liouville Theorem on
entire harmonic functions:

Theorem. (Liouville)

If u is harmonic and bounded below (or above) on the whole IRn then u is a
constant.

Of course there exist non trivial entire harmonic functions which are not
bounded (e.g. affine functions).
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Some important properties of harmonic functions: mean value and
Liouville theorems

For the proof, assume that u ≥ 0 and take arbitrary points x and y in IRn and
let R > 0. Consider then the two balls BR(x) and Br (y) dove r = R + |x − y |.
By construction, BR(x) ⊂ Br (y) so that for their measures

|BR(x) ≤ |Br (y)|
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By the mean Value Property then

u(x) =
1

|BR(x)|

∫
BR (x)

u(z)dz ≤ 1

|BR(x)|

∫
Br (y)

u(z)dz

or, which is the same,

|Br (y)|
|Br (y)|u(x) ≤ |Br (y)|

|BR(x)|
1

|Br (y)|

∫
Br (y)

u(z)dz

Apply the Mean Value Theorem on the righthand side to get

u(x) ≤ |Br (y)|
|BR(x)|u(y) =

(R + |x − y |)n

Rn
u(y)

Since (R+|x−y|)n
Rn tends to 1 as R → +∞ the conclusion is u(x) ≤ u(y).Change

now the roles of x andy to complete the proof. •
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Some important properties of harmonic functions: mean value and
Liouville theorems

Liuoville type theorems are a crucial tool, in combination with blow-up
arguments, to prove a priori bounds for solutions of Dirichlet problems for
elliptic pde’s in a bounded domain.
The heuristic argument goes like this: assume by contradiction that an
estimate such as ||u||Ω ≤ C does not hold for all solutions of the problem and
some specific norm; rescale with a parameter λ and show that the limit u0 as
λ→ 0 is a non trivial solution of a pde in the whole space IRn contradicting
some available Liouville theorem.
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Theorem. (Harnack)

Let Ω′ ⊂⊂ Ω. There exists C depending n, Ω′ and Ω but not on u such that

sup
Ω′

u ≤ C inf
Ω′

u

for any function u ≥ 0 which is harmonic on Ω.

An interesting variant is the weak Harnack inequality which holds also for non
smooth positive solutions of a class of fully nonlinear pde’s:

( 1

|BR |

∫
BR

up(z)dz
) 1

p ≤ C inf
BR

u
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Maximum Principle for linear elliptic operators

We consider now a general 2nd order operator in non divergence form

Lu :=
n∑

i,j=1

aij(x)uxi xj +
n∑

i=1

bi (x)uxi + c(x)u = Tr(A(x)∇2u) +b(x) ·∇u + c(x)u

We shall assume that L is elliptic, that is the coefficient matrix A(x) is positive
definite, i.e.

0 < λ(x)|ξ|2 ≤ A(x)ξ · ξ ≤ Λ(x)|ξ|2

con 0 < λ(x) ≤ Λ(x) (respectively the minimum and maximum eigenvalue of
A(x).
If, moreover, λ(x) > λ > 0 for all x ∈ Ω the operator L is uniformly elliptic.
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Maximum Principle for linear elliptic operators

Example

Obviously the Laplacian ∆u is unifomly elliptic with λ = Λ = 1. The operator
Lu = Tr(A(x)∇2u) with (

1 0
0 0

)
is elliptic on Ω = {x ∈ IR2 : x1 > 0 with λ(x) = min[1; x1], Λ(x) = max[1; x1]
and uniformly elliptic on the strip

Ω = {x ∈ IR2 : 0 < α < x1 < β, x2 ∈ IR}
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Maximum Principle for linear elliptic operators

The ellipticity conditions are in fact monotonicity conditions on the space Sn of
symmetric n × n matrices endowed with the partial ordering induced by the
cone K of those matrices which are positive semidefinite. Namely,

N ≥ M if and only if N −M is positive semidefinite

To illustrate this, consider the mapping

F (x , t, p,M) := Tr(Ax)M) + b(x) · p + c(x)t

Then, using the linearity of the trace,

F (x , t, p,M + H)− F (x , t, p,M) = Tr(A(x)(M + H))− Tr(A(x)M) =

= Tr(A(x)H) ≥ 0

for any positive semidefinite matrix H.

Let us point out sort of a delicate linear algebra issue: the product of two
positive semidefinite matrices such as A and H is not necessarily positive
semidefinite but the trace of their product is nonetheless ≥ 0
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The Hopf Maximum Principle for linear elliptic operators with no
zero order term:c ≡ 0

Theorem.
Maximum Principle
Let L be uniformly elliptic in a bounded domain Ω, aij , bi ∈ C(Ω) and c ≡ 0. If
u ∈ C(Ω)

⋂
C 2(Ω) is such that Lu(x) ≥ 0 in Ω, then

sup
Ω

u = sup
∂Ω

u
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The Hopf Maximum Principle for linear elliptic operators with no
zero order term:c ≡ 0

Under the stronger assumption Lu(x) > 0 in Ω the proof is quite immediate
because, for any function u, at an interior maximum point

∇u(x0) = 0 ∇2u(x0) is negative semidefinite

so that

Lu(x0) = Tr(A(x0)∇2u)(x0) + b(x0) · ∇u(x0) + c(x0)u(x0) ≤ 0

because by ellipticity, as observed above Tr(A(x0)∇2u)(x0) ≤ 0 while the first
order term vanishes and we assumed c ≡ 0.

Hence a contradiction arises with our assumption on the sign of Lu(x) and the
result is proved in this case.
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The Hopf Maximum Principle for linear elliptic operators with no
zero order term:c ≡ 0

For the general case we observe that compactness, continuity and uniform
ellipticity imply that for any i and some β > 0

β ≥ bi (x)/λ ≥ −β aii (x) ≥ λ > 0

Choose i = 1 and consider the function x → φ(x) = eγx1 , where γ is a
parameter to be chosen later.
A direct computation shows that ∇φ(x) = (γeγx1 , 0, ..., 0) and that the trace
of A(x)∇2φ(x) is a11(x)γ2eγx1 .

So, for γ > β

Lφ(x) = a11(x)γ2eγx1 +b1(x)γeγx1 = eγx1 (a11γ
2 +γb1) ≥ eγx1 (λγ2−γλβ) > 0

By linearity and for any ε > 0

L[u + εφ] = Lu + εLφ ≥ εLφ > 0
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The Hopf Maximum Principle for linear elliptic operators with no
zero order term

Hence, by the first part of the proof, u + εφ satisfies the Maximum Principle,
i.e.

sup
Ω

(u + εeγx1 ) = sup
∂Ω

(u + εeγx1 )

Since Ω is compact the sequence u + εeγx1 converges uniformly to u as ε→ 0
implying

sup
Ω

u = sup
∂Ω

u

Remark.
The proof shows that the same results holds under the weaker assumption that
A(x) is positive semidefinite with at least one akk ≥ λ > 0 [GT p. 33]

RISM - February 24-28, 2020 Maximum Principle and Detours



The Hopf Maximum Principle for linear elliptic operators with zero
order term

What can be said if the coefficient c is not identically 0 ?
The next examples show that for c > 0 one cannot expect in general the
validity of the Maximum Principle.

Example

u(x) = sin x satisfies u′′ + u = 0 in Ω = (0, π). In this example c ≡ 1;
obviously, supΩ = u(π/2) = 1 while sup u∂Ω = 0 so the Maximum Principle
does not hold. Observe also that u satisfies supΩ u = sup∂Ω u in Ω = (π, 2π)
Let us observe that the number 1 is an eigenvalue for the Dirichlet problem
−u′′ = u in Ω = (0, π) with zero boundary conditions.

A similar situation holds for u(x1, x2) = sin(πx1) sin(πx2) which satisfies
∆u + 2π2u = 0 in the square (0, 1)× (0, 1) and vanishes on its boundary.
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Elliptic operators with c ≤ 0: the Weak Maximum Principle

The next result gives an information for the case c ≤ 0:

Theorem.

Weak Maximum Principle
Let L be uniformly elliptic in a bounded domain Ω, aij , bi , c ∈ C(Ω) and c ≤ 0.
If u ∈ C(Ω)

⋂
C 2(Ω) is such that Lu(x) ≥ 0 in Ω, then

(WMP) sup
Ω

u ≤ sup
∂Ω

u

Indeed, in the subset Ω+ = {x ∈ Ω : u(x) > 0} we have

Tr(A(x)∇2u) + b(x) · ∇u ≥ −c(x)u ≥ 0

so that by the previous result

sup
Ω

u = sup
Ω

+
= sup
∂Ω+

u ≤ sup
∂Ω

u
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A Comparison Principle

From the above proposition a Comparison Principle is easily derived:

Proposition.

Assume L is uniformly elliptic in a bounded domain Ω, aij , bi , c ∈ C(Ω) and
c ≤ 0. If u, v ∈ C(Ω)

⋂
C 2(Ω) satisfy Lu ≥ Lv in Ω, and u ≤ v on ∂Ω, then

u ≤ v in Ω

Indeed let w := u − v so, by linearity, Lw ≥ 0 in Ω and w ≤ 0 on ∂Ω.
By the above proposition

u − v ≤ sup
Ω

w ≤ sup
∂Ω

w ≤ 0
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An a priori bound

A remarkable consequence of the Comparison Principle is an a priori bound
on all functions u satisfying the differential inequality Lu ≥ f :

Theorem.
Let Lu ≥ f in a bounded domain Ω where L is uniformly elliptic and c ≤ 0.
Then

sup
Ω

u ≤ sup
∂Ω

u+ + C sup
Ω

|f −|
λ

where C is a constant depending only on d = diamΩ and β = sup |b|
λ

We use the notation g+ = max[g ; 0], g− = min[g ; 0].

Proof Assume that Ω is contained in the slab {x ∈ IRn : 0 < x1 < d}. Then,
for φ(x) = eαx1 with α ≥ β + 1,

Tr(A(x)∇2φ) + b(x) · ∇φ = (α2a11 + αb1)eαx1 ≥ λ(α2 − αβ)eαx1 ≥ λ > 0

Consider

v := sup
∂Ω

u+ + (eαd − eαx1 ) sup
Ω

|f −|
λ
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An a priori bound

Proof (continued) Observe that v ≥ 0 and consequently

Lv = −(α2a11 + αb1)eαx1 + cv ≤ −(α2a11 + αb1)eαx1 ≤ −λ sup
Ω

|f −|
λ

Hence

L(v − u) ≤ −λ(sup
Ω

|f −|
λ

+
f

λ
) ≤ 0 in Ω

On the other hand, v − u ≥ 0 on ∂Ω so using the Comparison Principle we
conclude

sup
Ω

u ≤ sup
Ω

v ≤ sup
∂Ω

u+ + (eαd − 1) sup
Ω

|f −|
λ

• • •

RISM - February 24-28, 2020 Maximum Principle and Detours



An a priori bound

An a priori bound for ∇u can be obtained from the above results under the
assumption f ∈ C 1, u ∈ C 3:

|∇u(x)| ≤ sup
∂Ω
∇u + C(1 + ||f ||C1 )

The proof is very simple in the case L = ∆ : apply the previous result to
v = ∆u. This is the starting point of Bernstein’s method.
For complete operators with non constant coefficients things are much harder
(see [Koln] p. 8
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A non linear version of the Comparison Principle

Consider the viscous Hamilton-Jacobi differential inequalities

∆u + H(∇u) + c(x)u ≥ ∆v + H(∇v) + c(x)v

where H(p) is a continuous function together with ∇pH continuous.
This type of inequalities arise for example in the Dynamic Programming
formulation of optimal control problems for a deterministic system perturbed by
a Brownian motion.
In those models H is a concave function of p and c(x) ≡ c < 0.

Proposition.

If u, v ∈ C(Ω)
⋂

C 2(Ω) satisfy

∆u + H(∇u) + c(x)u ≥ ∆v + H(∇v) + c(x)v

with u ≤ v on ∂Ω and c ≤ 0 then

u ≤ v in Ω
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A non linear version of the Comparison Principle

The function w := u − v satisfies

∆w + H(∇u)− H(∇v) + c(x)w ≥ 0

By the intermediate value theorem applied to H:

∆w(x) +∇pH · ∇w + c(x)w ≥ 0

where ∇pH is evaluated at some point on the segment joining ∇u with ∇v .
This is a linear partial differential inequality of the type covered by the previous
Comparison Principle • • •
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Sufficient conditions for the Weak Maximum Principle

We have seen that (WMP) holds if c ≤ 0. A different situation in which the
validity of (WMP) is guaranteed is illustrated by the next

Proposition.

Suppose there exists a function φ ∈ C(Ω) ∩ C 2(Ω) such that

φ > 0 in Ω , Lφ ≤ 0 in Ω

Then (WMP) holds.

To see this we look for simplicity of calculation to the one-dimensional case.
We can assume that a ≡ 1 so that we have

Lφ = aφ′′ + bφ′ + cφ ≤ 0

Let u be such that Lu ≥ 0 and assume also that u(x) = v(x)φ(x) for some
function v . Since u′ = v ′φ+ vφ′ , u′′ = v ′′φ+ 2v ′φ′ + vφ′′ it follows
that

0 ≤ Lu = φv ′′ + (2φ′ + bφ)v ′ + vLφ

or, which is the same since φ > 0,

v ′′ + (2
φ′

φ
+ b)v ′ +

Lφ

φ
v ≥ 0
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Sufficient conditions for the Weak Maximum Principle

By assumption the zero-order coefficient Lφ
φ

is ≤ 0 so by the (WMP)

v =
u

φ
≤ sup

Ω
v ≤ sup

∂Ω
v = sup

∂Ω
v
u

φ

Since φ > 0 it follows that u ≤ 0 on ∂Ω implies u ≤ 0 in Ω.
• • •
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Sufficient conditions for the Weak Maximum Principle

When condition (?) is fulfilled ?

An obvious case is c ≤ 0: indeed in this case any positive constant can be
taken as φ.

Another condition, of quite different nature, involves the notion of
directionally narrow domain, that is a domain Ω such that, for some j

Ω ⊆ {x ∈ IRn : a < xj < a + ε}

with ε > 0
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Sufficient conditions for the Weak Maximum Principle

Proposition.

There exists ε > 0 depending on the ellipticity constant as well as on
||b||∞, |c||∞ such that for Ω as above there is a function φ ∈ C(Ω) ∩ C 2(Ω)
such that

(?) φ > 0 in Ω , Lφ ≤ 0 in Ω

For the proof is natural to look for a concave quadratic function φ of the
variable x1, i.e.

φ(x1) = 1− β(x1 − a)2

and tune later the parameters with β > 0, ε > 0 in order to fulfil the sign
requirements.
A direct computation shows

Lφ = −2β[(a11(x) + b1(x1 − a)) + 1/2c(x)(x1 − a)2] + c(x)

Hence,
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Sufficient conditions for the Weak Maximum Principle

Lφ ≤ −2β[(λ+ b∗1 (x1 − a)) + 1/2c∗(x1 − a)2] + sup c(x)

where b∗1 , c∗ are lower bound for b1 and c ,respectively.
Fix then ε so small in order to have that

q(x1) = [(λ+ b∗1 (x1 − a)) + 1/2c∗(x1 − a)2] > 0

in (a, a + ε) (observe that is possible since q(a) = λ > 0).

Therefore the choice β > 1
2

max[max(a,a+ε)
c(x1)
q(x1)

; 0] yields Lφ ≤ 0.

On the other hand, the positivity of φ is guaranteed if ε is chosen to satisfy
also the condition ε2 < 1/β.

• • •

RISM - February 24-28, 2020 Maximum Principle and Detours



Sufficient conditions for the Weak Maximum Principle

We have seen that the role of the zero-order term c is a relevant one with
respect to the Maximum Principle.
This may seem a bit surprising at first sight.
However, assume c(x) ≡ c0 and observe that if u is a non trivial solution of
Lu = 0 then

Tr(A(x)∇2u) + b(x) · ∇u = −c0u ≥ 0

This means that c0 is an eigenvalue associated to the eigenfunction u of the
differential operator at the left hand side.

We will back on this important point later on in this course.
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The ABP estimate

The a priori bound

sup
Ω

u ≤ sup
∂Ω

u+ + C sup
Ω

|f −|
λ

obtained previously can be strengthened to a similar estimate where at the
right hand side appear an integral norm of f .
This result is the Alexandrov Maximum Principle also known as the
Alexandrov-Bakelman-Pucci estimate which involves the quantity

D∗(x) =
(

detA(x)
)1/n

=
( n∏

i=1

λi (x)
)1/n

where λi = λi (x) > 0 are the eigenvalues of the positive definite matrix A(x).
The quantity D∗(x) is the geometric mean of the eigenvalues of A(x).
Observe that λ ≤ D∗(x) ≤ Λ (here, λ,Λ are the minimum and the maximum
eigenvalue of A(x)) and also recall from linear algebra the inequality

1

n
TrA(x) =

∑n
i=1 λi (x)

n
≥ (

n∏
i=1

λi (x)
)1/n

= D∗(x)

The second term is the arithmetic mean of the eigenvalues.
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The ABP estimate

The upper contact set of a function u is the subset of Ω where u is concave:

Γ+ = {y ∈ Ω : ∃py such that u(x) ≤ u(y) + py · (x − y) for all x ∈ Ω}

At least for C 1 functions, it is the set of points in Ω at which the tangent plane
at the graph of u lies above the graph of u Hence, for u ∈ C 2(Ω) , py = ∇u(y)
and ∇2u is negative semidefinite on Γ+

Theorem.
Assume L uniformly elliptic, |b|

D∗ ,
f
D∗ ∈ Ln(Ω) and c ≤ 0. Let

Lu ≥ f , u ∈ C(Ω)
⋂

C 2(Ω), then

sup
Ω

u ≤ sup
∂Ω

u+ + C diam(Ω) || f
−

D∗
||Ln(Γ+)

where C is a constant depending only on n, || |b|
D∗ ||Ln(Γ+)(not on u !)
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The ABP estimate

A few remarks before the proof:

I if, in particular, u is convex then Γ+ = ∅ and the elementary Maximum
Principle result for convex function is recovered; for general u the

correction term C || f
−

D∗ ||Ln(Γ+) pops up in the estimate

I if f ≥ 0 and u ≤ 0 on ∂Ω then f − = 0 = u+
∂Ω, hence (WMP) holds

I if f , D∗ ∈ C(Ω) then || f
−

D∗ ||Ln ≤ ||
f
D∗ ||Ln∞|Ω|

1
n ≤ 1/λ||f ||L∞ |Ω|

1
n :

hence (ABP) generalizes the a priori bound previously established,

I the (ABP) estimate holds more generally for W 2,n functions
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The ABP estimate

Lemma.
Let u ∈ C(Ω)

⋂
C 2(Ω) and g ∈ C(IRn), g ≥ 0. Then,∫

BM (0)

g dz ≤
∫

Γ+

g(∇u(y)| det∇2u(y)|dy

with

M =
supΩ u − sup∂Ω u

diam(Ω)
≥ 0

In particular, for g ≡ 1,we have |BM(0)| = Mnωn so that

sup
Ω

u ≤ sup
∂Ω

u +
diam(Ω)

ω
1/n
n

(∫
Γ+

| det∇2u(y)|dy
)1/n

where ωn is the measure of the unit ball in IRn.
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The ABP estimate

Proof Let Σ := ∇u(Γ+) = {z : z = ∇u(y), y ∈ Γ+}. By the change of variable
formula ∫

Σ

g(z)dz ≤
∫

Γ+

g(∇u(y))| det∇2u(y)|dy

(inequality arises since the mapping y → ∇u(y) need not be 1− 1).
To prove the statement it is then enough to check that BM(0) ⊂ Σ, i.e. that

(?) for all a ∈ BM(0) there exists y ∈ Γ+ : a = ∇u(y)

To prove this, consider for fixed a the function

La(t) := min
x∈Ω

(t + a · x − u(x))

Easy to check that

I t → La(t) is continuous

I La(t) > 0 for t > t0 > 0, La(t) > 0 for t < t1 < 0 (observe that a · x and
u are bounded)
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The ABP estimate

Proof (continued) Fix ta ∈ (t0, t1) such that La(ta) = 0. Then, by definition of
La there exists y∗ ∈ Ω such that

0 = ta + a · y − u(y∗) ≤ ta + a · x − u(x) for all x ∈ Ω

In particular, for = x0 such that u(x0) = supΩ u(x) it follows

u(y∗) ≥ sup
Ω

u(x) + a · (y∗ − x0) = M diam(Ω) + sup
∂Ω

u(x) + a · (y∗ − x0)

Since |a| < M this implies
u(y∗) > sup

∂Ω
u(x)

meaning that y∗ /∈ ∂Ω. So a = ∇u(y∗) and, by construction y ∈ Γ+

For g ≡ 1 the left-hand side equals Mnωn and the thesis easily follows.
• • •
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The ABP estimate

Lemma.
If A(x) is positive definite the following inequality holds

| det∇2u(x)| ≤
(
−Tr(A(x)∇2u(x))

nD∗(x)

)n

forall x ∈ Γ+

Proof. Recall from linear algebra that detM = µ1µ2...µn where the µi are
the eigenvalues of the square n × n matrix M so that the inequallity between
arithmetic and the geometrical means of positive numbers µ1, ..., µn can be
stated as

⊕ (detM)1/n ≤ TrM

n

Recall also that

det(MN) = detM detN det(−M) = det(−I ) detM = (−1)n detM

Then
(D∗)n det(−∇2u) = detA det(−∇2u) = det(−A∇2u)
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The ABP estimate

Proof (continued) Hence

⊕⊕
(

det(−∇2u)

)1/n

=
1

D∗

(
det(−A∇2u)

)1/n

The eigenvalues αi (x) of matrix A(x) are > 0 because A(x) is positive definite,
while the eigenvalues βi (x) of ∇2u are ≤ 0 on Γ+ since u is concave on that
set; so

det(−A∇2u) = (−1)n detA det∇2u = (−1)n
i=n∏
i=1

αi

i=n∏
i=1

βi ≥ 0 (!!!)

Now, using ⊕ with M = −A∇2u and ⊕⊕(
det(−∇2u)

)1/n

≤ 1

D∗
Tr(−A∇2u)

n

Since det(−∇2u) = (−1)n det(∇2u) we conclude that on the set Γ+

| det(∇2u)| ≤
(
Tr(−A∇2u)

nD∗

)n

=

(
−Tr(A∇2u)

nD∗

)n
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The ABP estimate

Proof of (ABP) Let us treat first the simple case b ≡ 0, c ≡ 0 and look at u
such that Lu ≥ f that is

Tr(A(x)∇2u) ≥ f = f + − f − ≥ −f −

i.e.
−Tr(A(x)∇2u) ≤ f −

By Lemma 1 and Lemma 2

sup
Ω

u ≤ sup
∂Ω

u +
diam(Ω)

ω
1/n
n

(∫
Γ+

( f −

nD∗
)n
dx

)1/n

which proves the (ABP) estimate in this case.

The proof in the general case b 6= 0, c ≤ 0 is quite technical; It makes use in
particular of the Lemma with a specific choice of g (see final version of these
notes).
• • •
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The ABP estimate: (WMP) in small domains

The (ABP) estimate has been stated (and proved) under the assumption c ≤ 0.
However, even if this assumption fails one can nonetheless obtain a (WMP) in
”small” domains:

Theorem.
Under the same assumptions as in (ABP) except for c ≤ 0, there exists
δ = δ(n, diamΩ, λ, ||b||Ln , ||c+||∞) > 0 such that

Lu ≥ 0 in Ω u ≤ 0 in ∂Ω

implies
u ≤ 0 in Ω

provided either |Ω| or diamΩ is small enough.

Proof Set c = c+ − c− with c+, c− ≥ 0, then by assumption
0 ≤ Lu = Tr(A∇2u) + b · ∇u− c−u + c+u = Tr(A∇2u) + b · ∇u− c−u so that

Tr(A∇2u) + b · ∇u − c−u ≥ −c+u = −c+u+ + c+u− ≥ −c+u+ := f
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The ABP estimate: (WMP) in small domains

Proof(continued) The operator on the left-hand side satisfies (ABP) since
−c− ≤ 0 and consequently

supΩu ≤ sup
∂Ω

u+ + Cdiam Ω||c
+u+

D∗
||Ln ≤ Cdiam Ω||c

+u+

D∗
||Ln

Here we used the fact that f = −f − since f ≤ 0. Then, observing that
1

D(x)
≤ 1/λ and using the assumption that u is ≤ 0 on the boundary we derive

sup
Ω

u ≤ sup
Ω

u+ sup
Ω

c+ C

λ
diamΩ |Ω|1/n := γ

If the claim were false we would have supΩ u = supΩ u+ > 0.
This contradicts the above inequality for γ < 1.
• • •

Remark.
The proof shows indeed that sign propagation holds true also if supΩ c+ is
small enough.
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Generalized subharmonic functions

A crucial property (actually, a characterisation) of C 2(Ω) subharmonic
functions is the mean value inequality:

u(y) ≤ 1

ωnRn

∫
B

u dx

for any ball B = BR ⊂⊂ Ω. For harmonics, equality holds in the above.
The validity of that inequality can be taken as a definition of subharmonicity
for integrable functions.
Another weak notion is the distributional one,∫

Ω

u∆φ dx ≥ 0

for any φ ∈ C 2
0 (Ω)
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Generalized subharmonic functions: a notion from Potential Theory

A different classical notion of subharmonicity in a non smooth setting is the
following one, originated in abstract potential theory:
a function u : Ω→ IR is subharmonic if

I (a) u ∈ USC(Ω)

I (b) for any K ⊂⊂ Ω and for any h ∈ C 2(Ω) such that ∆h = 0 in K the
inequality u ≤ h on ∂K implies u ≤ h in K

The theory of such functions is fully developed in [Hö], let us list here some
basic properties:

I u, v subharmonic implies u + v subharmonic (non trivial proof !)

I u subharmonic, t > 0 implies tu subharmonic

I ui , i = 1, ..., k subharmonic implies u(x) := max[u1(x), ..., uk(x)]
subharmonic (same property for convex functions)

I ui , i ∈ I subharmonic and u(x) := supI ui (x) upper semicontinuous implies
u subharmonic

I un, i ∈ IN decreasing sequence of subharmonics implies
u(x) := limn→+∞ un(x) subharmonic

I if u is subharmonic and C 2 then ∆u ≥ 0
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Generalized subharmonic functions: a notion from Potential Theory

The validity of the Maximum Principle is somewhat built in the definition as
shown by the next

Proposition.

If u is subharmonic in Ω then

(PM) max
Ω

u = max
∂Ω

u

Proof
The main tool in the proof is the solvability of the Dirichlet problem

∆h = 0 in B = BR(0) h = g on ∂B

Indeed, as one can check, its unique solution h ∈ C 2 (uniqueness follows from
the Maximum Principle for harmonic functions) is given by

h(x) =
R2 − |x |2

nωnR

∫
∂B

g(y)

|x − y |n for x ∈ B , h(x) = g(x) for x ∈ ∂B
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Generalized subharmonic functions: a notion from Potential Theory

Proof (continued)
Assume that u attains its maximum value on Ω at some interior point x0 . We
can assume that the maximum is strict. Take a ball B(x0) ⊂⊂ Ω and let h be
the solution of the Dirichlet problem in B with boundary datum u.
Since h is harmonic in the classical sense then by Maximum Principle

max
B

h = max
∂B

h = max
∂B

u

On the other hand, by definition of subharmonic

max
B

h ≥ max
B

u = u(x0) > max
∂B

u

and a contradiction arises with the previous equation.
• • •
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Generalized subharmonic functions: a notion from Potential Theory

Lemma.
The sum of two subharmonics is subharmonic

Proof
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Generalized subharmonic functions:a notion from Potential Theory

An important characterisation of subharmonic functions which will be recalled
later on is contained in the next

Lemma.
Let u ∈ USC(Ω). Then u is not subharmonic if and only if

(?) there exists x0 ∈ Ω and a quadratic polynomial q such that

∆q < 0 in Ω , q(x0) = u(x0) , u ≤ q in a neighborhood of x0

Proof
Assume (?) holds and suppose by contradiction that u is subharmonic. Consider

φ(x) := u(x) + (−q(x)− ε|x − x0|2, ε > 0

By assumptions on q

φ(x0) = 0 , φ(x) ≤ −ε|x − x0|2 , x ∈ B(x0)
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Generalized subharmonic functions:a notion from Potential Theory

Moreover, φ is generalized subharmonic in B(x0) as the sum of two
subharmonics :
u (possibly non smooth) and the C 2 function ψ = −q − ε|x − x0|2 which is
subharmonic since ∆ψ = −∆q − 2nε which is > 0 for small enough ε.
Moreover, φ(x0) = 0 while by semicontinuity φ < 0 in a neighborhood of x0.
By virtue of the Maximum Principle (previous proposition in this section) such
a function φ cannot exist !

In order to prove the reverse implication assume now that u is not subharmonic,
so that there exists a ball B = BR and a function h ∈ C(B)

⋂
C 2(B) such that

∆h = 0 in B , u − h ≤ 0 on ∂B BUT max
B

(u − h) = (u − h) > 0

Consider vε := h(x)− ε|x |2. Then, for sufficiently small ε > 0,

u − vε = u − h + ε|x |2 ≤ max
∂B

(u − h) + εR2 ≤ 0 on ∂B

On the other hand,

sup
B

(u − vε) ≥ sup
B

(u − h + ε|x |2) ≥ sup
B
> 0

The upper semicontinuous function u − vε attains therefore its maximum over
B at some interior point x0 ∈ B, i.e.

u(x) ≤ vε(x) + u(x0)− vε(x0) = h(x)− ε|x |2 + u(x0)− h(x0) + ε|x0|2
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Generalized subharmonic functions:a notion from Potential Theory

We proceed now to show that the quadratic polynomial

q(x) := u(x0)−vε(x0)+h(x0)+∇h(x0)·(x−x0)+
1

2
∇2(x0)(x−x0)·(x−x0)+

1

2
ε|−x0|2−ε|x |2

fulfills the requirements in the statement.
Set Th(x) := h(x0) +∇h(x0) · (x − x0) + 1

2
∇2(x0)(x − x0) · (x − x0)

Simple computations give
I q(x0) = u(x0)− vε(x0) + h(x0)− ε|x0|20u(x0)
I ∆q(x) = ∆h(x0) + nε− 2nε = −nε < 0
I

u(x)− q(x) = u(x)− u(x0) + vε(x0)− Th(x)|+ ε|x |2 − 1

2
ε|x − x0|2 ≤

≤ vε(x)− vε(x0) + vε(x0)− Th(x)|+ ε|x |2 − 1

2
ε|x − x0|2 =

= h(x)− ε|x |2 − Th(x) + ε|x |2 − 1

2
ε|x − x0|2

As x → x0 for the Taylor polynomial Th one has Th(x)− h(x)) = o(|x − x0|2)
and ,consequently,

u(x)− q(x) ≤ − ε
2
|x − x0|2 < 0

in a small neighborhood of x0.
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Subharmonic functions: the viscosity notion

Up to now we have discussed the Maximum Principle first for C 2 and then for
generalized subharmonics. We make now a further step by considering
nonlinear generalizations of the Laplace operator leading to the introduction of
subharmonic functions in the viscosity sense following Crandall-Lions
[≥ 1981]
Let F : Sn → IR be a continuous function which is monotone increasing with
respect to the partial ordering Sn induced by the cone of positive semidefinite
matrices, namely

Y ≥ X implies F (Y ) ≥ F (X )

This property is often referred as degenerate ellipticity. A stronger
monotonicity condition is uniform ellipticity:

Y ≥ X implies F (Y ) ≥ F (X ) + λ||Y − X ||

for some λ > 0.
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Subharmonic functions: the viscosity notion

Examples of degenerate elliptic operators:

I F (X ) = Tr X (the Laplace operator)

I F (X ) = Tr(AX ) (uniformly elliptic if A is positive definite, degenerate
elliptic if A is positive semidefinite)

I P+(X ) = Λ
∑

ei>0 ei + λ
∑

ei<0 ei (here, 0 < λ ≤ Λ and ei are the
eigenvalues of the matrix X ∈ Sn (the Pucci maximal operator)

I P−(X ) = λ
∑

ei>0 ei + Λ
∑

ei<0 ei (the Pucci minimal operator)

I F (X ) = supi∈I Tr(AiX ) (the Bellman operators)

I F (X ) = supi∈I inf j∈J Tr(AijX ) (the Isaacs operators)
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Subharmonic functions: the viscosity notion

Definition.
A function u ∈ USC(Ω) satisfies F (∇2u) ≥ 0 in the viscosity sense if for any
x0 ∈ Ω and any C 2 function φ such that

(u − φ)(x0) = 0 , u − φ ≤ 0 in B(x0)

the following holds true
F (∇2φ(x0)) ≥ 0

In particular, for F (X ) = Tr X , u is subharmonic in the viscosity sense if for
any x0 ∈ Ω and any C 2 function φ such that

(u − φ)(x0) = 0 , u − φ ≤ 0 in B(x0)

the following holds true
∆φ(x0)) ≥ 0
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Subharmonic functions: the viscosity notion
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Subharmonic functions: the viscosity notion

The motivation for this definition comes from the simple observation that if
u ∈ C 2 and x0 ∈ Ω is a local maximum for u − φ then ∇2(u − φ)(x0) is
negative semidefinite, that is ∇2u(x0) ≤ ∇2φ(x0) in the sense of matrices. If u
is a classical solution of F (∇2u) ≥ 0 then by degenerate ellipticity

0 ≤ F (∇2u(x0)) ≤ F (∇2φ(x0))

This proves that a C 2 function satisfying F (∇2u) ≥ 0 in the classical sense is
also a viscosity solution of the same differential inequality (we use also the
terminology u is a viscosity subsolution).

Conversely, if u ∈ C 2 satisfies F (∇2u) ≥ 0 in the viscosity sense then u is a
classical solution as well: it is enough to take φ = u as test function in the
definition.
Observe that is enough to test the operator on quadratic polynomials.
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Subharmonic functions: the notion of Calabi

In 1958 E. Calabi introduced the following notion:

u ∈ USC(Ω) is a generalized subharmonic function if for any x0 ∈ Ω and for
any ε > 0 there exist an open ball B = B(x0) and a C 2 function φ, depending
on x0 and ε such that

(u − φ)(x0) = 0 , u − φ ≥ 0 in B and ∆φ(x0) ≥ −ε

He proves that such functions satisfy the Maximum Principle. We will come
back on this notion later on
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

The definition of subharmonic in the viscosity sense is naturally extended to
general degenerate elliptic functions F : ω × IR× IRn Sn → IR as follows:

I u ∈ USC(Ω) satisfies F (x , u(x),∇u(x),∇2u(x)) ≥ 0 (u is a viscosity
subsolution) if for any x0 ∈ Ω and any C 2 function φ such that
(u − φ)(x0) = 0 , u − φ ≤ 0 in B(x0) the following holds true
F (x0, φ(x0),∇φ(x0),∇2φ(x0)) ≥ 0
Symmetrically,

I u ∈ LSC(Ω) satisfies F (x , u(x),∇u(x),∇2u(x)) ≤ 0 (u is a viscosity
supersolution) if for any x0 ∈ Ω and any C 2 function φ such that
(u − φ)(x0) = 0 , u − φ ≥ 0 in B(x0) the following holds true
F (x0, φ(x0),∇φ(x0),∇2φ(x0)) ≤ 0

I u ∈ C(Ω) satisfies F (x , u(x),∇u(x),∇2u(x)) = 0 (u is a viscosity
solution) if it is both a sub and a super solution.
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

On Calabi’s notion
Translating the original definition to the nonlinear setting,
u satisfies F (x0,D

2u(x0)) ≥ 0 in the Calabi sense, if for any ε > 0 there exists a
C 2 function φε such that φε(x0) = u(x0), u(x) ≥ φε(x) for x in a neighborhood
of x0 and F (x0,D

2φε(x0)) ≥ −ε

The first evident difference is that a subsolution in the Calabi sense is required
to admit smooth functions tangent from below, whereas no such property is
required in the definition of viscosity subsolution (if no smooth function tangent
from above at x0 does exist, u automatically is a viscosity subsolution at x0).
More than that, in the viscosity definition the inequality is tested on smooth
functions tangent to u from ABOVE, whereas in the Calabi definition the
smooth functions are tangent to u from BELOW.

This is a stronger requirement. Indeed, one has always

F (x0,D
2u(x0)) ≥ 0 Calabi =⇒ F (x0,D

2u(x0)) ≥ 0 viscosity
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Viscosity solutions of degenerate elliptic equations: viscosity-Calabi

Indeed, assume u is subsolution in the Calabi sense and let φ be a smooth
function tangent to u at x0 from above. Then, φ(x0) = u(x0) = φε(x0) and
φ(x) ≥ u(x) ≥ φε(x) for x in a neighborhood of x0. Thus, D2φ(x0) ≥ D2φε(x0)
since x0 is a local minimum point for φ− φε, and, by ellipticity, we get

F (x0,D
2φ(x0)) ≥ F (x0,D

2φε(x0)) ≥ −ε

Since ε is arbitrarily positive, we conclude by letting it tend to 0.
We observe that the converse of the above implication is FALSE, i.e. there
exist viscosity subsolutions which are NOT Calabi subsolutions. As an example,
let us consider the simple one dimensional function

u(x) =

{
2x2 if x ≤ 0
x2 if x ≥ 0
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Viscosity solutions of degenerate elliptic equations: viscosity-Calabi

u is a C 1 function, not C 2 at x0 = 0, for which there exist smooth tangent
functions both from above and from below at any point. It is easy to realize
that for any C 2 function φ tangent to u from above at 0, one has φ′′(0) ≥ 4,
as well as any C 2 function ψ tangent to u from below at 0 satisfies ψ′′(0) ≤ 2.
Thus, in the viscosity sense u satisfies

u′′(0) ≥ α ∀α ≤ 4
u′′(0) ≤ α ∀α ≥ 2
u′′(0) = α ∀α ∈ [2, 4]

On the other hand, by the Calabi definition, it follows that u satisfies in the
Calabi sense 

u′′(0) ≥ α ∀α ≤ 2
u′′(0) ≤ α ∀α ≥ 4
@α ∈ IR : u′′(0) = α

In particular, for 2 < α < 4, u satisfies u′′(0) ≥ α and u′′(0) ≤ α in the
viscosity sense but not in the Calabi sense.

RISM - February 24-28, 2020 Maximum Principle and Detours



Viscosity solutions of degenerate elliptic equations: viscosity-Calabi

The more restrictive character of the Calabi notion is even more evident at the
level of solutions. Indeed, by looking again at the one dimensional case for
simplicity, it follows that for any continuous function u and α ∈ IR, one has

u′′(x0) = α in the Calabi sense

⇐⇒

u(x) = u(x0) + u′(x0)(x − x0) +
α

2
(x − x0)2 + o((x − x0)2) as x → x0

Indeed, if u′′(x0) = α in the Calabi sense, then for every ε > 0 there exist C 2

functions φε and ψε satisfying φε(x0) = u(x0) = ψε(x0), φε(x) ≤ u(x) ≤ ψε(x)
for x in a neighborhood of x0 and α− ε ≤ φ′′ε (x0) ≤ ψ′′ε (x0) ≤ α + ε. By using
the Taylor expansion up to the second order for φε and ψε, the above
inequalities may be written as

u(x)− u(x0) ≥ φ′ε(x0)(x − x0) +
α− ε

2
(x − x0)2 + o((x − x0)2)

u(x)− u(x0) ≤ ψ′ε(x0)(x − x0) +
α + ε

2
(x − x0)2 + o((x − x0)2)

for x → x0.
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Viscosity solutions of degenerate elliptic equations: viscosity-Calabi

These imply first that u is differentiable at x0 and u′(x0) = φ′ε(x0) = ψ′ε(x0),
and then that

−ε+o((x−x0)2) ≤ u(x)− u(x0)− u′(x0)(x − x0)− (α/2)(x − x0)2

(x − x0)2
≤ ε+o((x−x0)2)

which yields the conclusion by the arbitrariness of ε > 0.
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

Large parts of the theory of linear elliptic equations has been carried over
successfully in the viscosity framework to two different levels of more generality:
nonlinear operators and continuous solutions (observe that testing by smooth
functions and integration by parts are not permitted in the fully nonlinear case,
i.e. for nonlinearities charging the second-order derivatives)

The major tool in the development of the theory is the Comparison Principle.
Let us state it in the simplified but yet representative setting F = F (u,∇2u):

Theorem.
Assume F either degenerate elliptic and such that F (t,X ) < F (s,X ) for any
X ∈ Sn and t > s (F is proper) or uniformly elliptic.
Let u, v : Ω :→ IR be, respectively, an upper and a lower semicontinuous
functions such that

F (u,∇2u) ≥ 0 , F (v ,∇2v) ≤ 0

in the viscosity sense in Ω. Then, u ≤ v on ∂Ω =⇒ u ≤ v in Ω
If, in particular, F (0, 0) = 0 the above yields, choosing v = 0, the Weak
Maximum Principle

u ≤ 0 on ∂Ω =⇒ u ≤ 0 in Ω
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

The proof is very simple if u and v are C 2. Assume that the statement is false:
then there exists x ∈ Ω such that (u − v)(x) = maxΩ(u − v) > 0. Then, by
standard calculus, ∇2(u − v)(x) is negative semidefinite . So, using first
degenerate ellipticity and then the strict monotonicity in the first variable

0 ≤ F (u(x),∇2u(x)) ≤ F (u(x),∇2v(x)) < F (v(x),∇2v(x)) ≤ 0

which gives a contradiction.

In the general case of semicontinuous u, v the proof is very involved and
requires quite deep ideas and technical tools. We describe synthetically now the
various steps.
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

Viscosity solutions have remarkable stability properties; a key notion in this
respect is that of half-relaxed limits:

I Let uk be a bounded sequence of functions. We write

lim sup ∗uk(x) := sup[lim sup
k→+∞

uk(xk) : xk → x ]

This half-relaxed limit is an upper semicontinuous function.

I

lim inf ∗uk(x) := inf[lim inf
k→+∞

uk(xk) : xk → x ]

This is a lower semicontinuous function.

An important stability property is expressed by the next result:
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

Proposition.

Let F be continuous, degenerate elliptic and proper. If uk ∈ USC(Ω) is a
bounded sequence satisfying F (x , uk ,∇uk ,∇2uk) ≥ 0 in the viscosity sense,
then u∗(x) := lim sup ∗uk(x) satisfies F (x , u∗,∇u∗∇2u∗) ≥ 0 in the viscosity
sense.

Similarly, if F (x , uk ,∇uk ,∇2uk) ≤ 0 then u∗(x) := lim inf ∗uk(x) satisfies the
same inequality in the viscosity sense.
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

Another major tool in the proof of the Comparison Principle is regularisation of
semicontinuous functions by inf and sup convolution. The sup convolutions of
a function u ∈ USC(Ω) are defined for ε > 0 by

uε(x) = max
y∈Ω

[u(y)− 1

ε
|x − y |2]

Similarly, the inf convolutions of a function u ∈ LSC(Ω) are defined by

uε(x) = min
y∈Ω

[u(y) +
1

ε
|x − y |2]

Main facts:
I uε is semiconvex, i.e. uε + 1

ε
|x |2 is convex , uε is semi concave , i.e.

uε − 1
ε
|x |2 is concave; therefore they are twice differentiable almost

everywhere (Alexandrov’s Theorem)
I If u ∈ USC(Ω) then

lim sup ∗uε = u

I If u ∈ LSC(Ω) then
lim inf ∗uε = u
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

I If u ∈ USC(Ω) satisfies F (x , u,∇u,∇2u) ≥ 0 in the viscosity sense in Ω
then F (x , uε,∇uε,∇2uε) ≥ 0 in Ωε

(the set of points x ∈ Ω where the max in definition of uε is attained with
y ∈ Ω; in particular,x ∈ Ωε if dist(x , ∂Ω) > (sup u − inf u)1/2)

I similar property for u ∈ LSC(Ω) and uε for the reverse differential
inequalities

Proof of Comparison Principle Assume by contradiction the existence of some
x0 ∈ Ω such that maxΩ(u− v) = (u− v)(x0) > 0. It is not hard to deduce then
that exists an arbitrary close point x1 for which it will be true that
maxΩ(uε − vε) = (uε − vε)(x1) > 0.

If (by chance, but there is no way guarantee that !) both uε, vε are twice
differentiable at x1 the proof is the same as in the classical smooth case using
degenerate ellipticity and properness of F and letting ε→ 0.
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

We know, however, that uε, vε are twice differentiable almost everywhere. The
remaining part of the proof aims at exploiting this property, somewhat in the
spirit of the proof of the ABP Maximum Principle.

Consider now the lower concave envelope Γ of w+ := (uε − vε) and denote by
A the set [x : Γ(x) = w(x)], (the contact set) and the set of slopes of the
planes that touch w at some point, i.e. ∇Γ(A) (Γ is concave so that ∇Γ is
well-defined).
We want to prove now the existence of some point x ∈ A where both uε and vε
are twice differentiable. It is easy to check that at any such a point
w = uε − vε > 0 and ∇2w = ∇2(uε − vε) is negative semidefinite, from which
the thesis would follow as in the ”favourable” case.
Since uε, vε are twice differentiable almost everywhere it is enough at this
purpose to prove that |A| > 0.

The non trivial proof of this is based on several steps:
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Viscosity solutions of degenerate elliptic equations: a quick
compendium

I |∇Γ(x)−∇Γ(y)| ≤ C
ε
|x − y | for all x , y in A

I |∇Γ(A)| =
∫
A
| det2 Γ(x)| dx ≤ (C

ε
)n|A|

I B(m/d) ⊂ ∇Γ(A) for d = diamΩε and
m = Γ(x1)−max∂Ωε = w(x1)−max∂Ωε w > 0

Therefore,

0 < |B(m/d)| ≤ (
C

ε
)n|A|

showing that A has positive measure. • • •
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The weak Maximum Principle in unbounded domains

In the first part of the talk I will discuss some results concerning the validity of
the weak Maximum Principle wMP , that is of the sign propagation property:

any u ∈ USC(Ω) such that

F (x , u,Du,D2u) ≥ 0 in Ω
u ≤ 0 on ∂Ω

[in the viscosity sense] satisfies also

u ≤ 0 in Ω

in an unbounded domain Ω ⊂ IRn satisfying either

I measure-type conditions
or

I geometric conditions related to the directions of ellipticity

of the (possibly) degenerate elliptic fully nonlinear mapping

F : Ω× IR× IRn × Sn

where Sn is the space of n × n symmetric matrices.
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Unbounded domains: the linear uniformly elliptic case

It is well-known that the wMP may not hold in unbounded domains: just
observe that

u(x) = 1− 1

|x |n−2

with n ≥ 3 satifies ∆u = 0 in the exterior domain Ω = IRn \ B1(0), u ≡ 0 on
∂Ω but u > 0 in Ω.

Some remarkable results concerning the validity of wMP for linear uniformly
elliptic operators in unbounded domains are due to X. Cabré CPAM 1995.

He considered domains satisfying the measure-geometric (G):

for fixed numbers σ, τ ∈ (0, 1), there exists a positive real number R(Ω) such
that for any y ∈ Ω there exists an n-dimensional ball BRy of radius Ry ≤ R(Ω)
satisfying

y ∈ BRy , |BRy \ Ωy,τ | ≥ σ|BRy |

where Ωy,τ is the connected component of Ω ∩ BRy/τ
containing y
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The perforated plane: a typical (G) domain
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Unbounded domains: the linear uniformly elliptic case

The above measure type condition introduced by Beresticky, Nirenberg and
Varadhan (CPAM 1994) requires, roughly speaking, that there is “enough
boundary” near every point in Ω allowing so to carry the information on the
sign of u from the boundary to the interior of the domain.

Note that (G) holds for

I bounded Ω with R(Ω) = C(n)diam(Ω)

I unbounded Ω with finite Lebesgue measure with R(Ω) = C(n)|Ω|
1
n

I infinite cylinders C (diam(C) = |C | = +∞)

Since (G) implies the metric condition supΩ dist(y , ∂Ω) < +∞, (G) does not
hold on cones.

Note also that the above metric condition holds for the ”perforated” plane
and not for exterior domains such as IRn \ B r (0)
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Unbounded domains: the linear uniformly elliptic case

For such domains Cabré proved an Alexandrov-Bakelman-Pucci (ABP) type
estimate:

If u is a W 2,p satisfies almost everywhere the uniformly elliptic partial
differential inequality

Tr
(
A(x)D2u

)
+ b(x) · Du + c(x) u ≥ f (x) in Ω

with
A(x)ξ · ξ ≥ λ|ξ|2 , λ > 0

then
sup

Ω
u ≤ sup

∂Ω
u+ + C R(Ω) ||f ||Ln(Ω)

RISM - February 24-28, 2020 Maximum Principle and Detours



Unbounded domains: the linear uniformly elliptic case

As a consequence of the (ABP) estimate above, if f ≡ 0 and u ≤ 0 on ∂Ω, the
validity of wMP follows in the case of linear uniformly elliptic operators.

Some of the results of Cabré have been later generalized to viscosity solutions
of fully nonlinear uniformly elliptic inequalities in CD-Leoni-Vitolo Comm.
PDE’s 2005 under a weaker form of (G), namely

(wG) there exist constants σ, τ ∈ (0, 1) such that for all y ∈ Ω there is a ball
BRy of radius Ry containing y such that

|BRy \ Ωy,τ | ≥ σ|BRy |

where Ωy,τ is the connected component of Ω ∩ BRy/τ containing y .

No boundedness of Ry required in this definition.
If supy∈Ω Ry < +∞ , then Ω satisfies condition (G).
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Unbounded domains: the fully nonlinear uniformly elliptic case

Typical examples of unbounded domains satisfying condition (wG) but not (G)
are cones of IRn (and their unbounded subsets).

Indeed, condition (wG) is satisfied in this case with Ry = O(|y |) as |y | → ∞.

A less standard example is the plane domain described in polar cohordinates as
Ω = IR2 \

{
% = eθ , θ ≥ 0

}
Here (wG) holds with Ry = O

(
e|y|
)

as |y | → ∞.
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Unbounded domains: the fully nonlinear uniformly elliptic case

Assume that F satisfies

I λTr (Q) ≤ F (x , t, p,X + Q)− F (x , t, p,X ) ≤ ΛTr (Q) for some
0 < λ ≤ Λ (uniformly ellipticity)

I t 7→ F (x , t, p,X ) is nonincreasing

I F (x , 0, p,O) ≤ b(x) |p| (linear growth with respect to the gradient
slot)

for all (x , t, p,X ) ∈ IRn × IR× IRn × Sn and for all Q ≥ O

To obtain the ABP estimate in this more general case we will assume, besides
condition (wG) on the domain, the following coupled requirement on the
geometry of the domain and on the growth of the transport term:

(C) sup
y∈Ω

Ry ‖b‖L∞(Ωy,τ ) <∞

This condition is trivially satisfied if supy∈Ω Ry ≤ R0 < +∞ in (wG), i.e. if Ω
satisfies (G), or when b ≡ 0, namely when F does not depend on the drift term.
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Unbounded domains: the fully nonlinear uniformly elliptic case

Remark.
For a complete operator, condition (wG) alone is not enough to guarantee the
validity of the Maximum Principle. Indeed, the function

u(x) = u(x1, x2) =
(

1− e1−xα1

) (
1− e1−xα2

)
,

with 0 < α < 1, is bounded and strictly positive in the cone

Ω =
{
x = (x1, x2) ∈ IR2 : x1 > 1, x2 > 1

}
and satisfies

u ≡ 0 on ∂Ω, ∆u + B(x) · Du = 0 in Ω

where the vectorfield B is given by

B(x) = B(x1, x2) =

(
α

x1−α
1

+
1− α
x1

,
α

x1−α
2

+
1− α
x2

)
As observed above, Ω satisfies (wG) with Ry = O(|y |) as |y | → ∞.
Since |B|L∞(Ωy,τ ) = 1 for every y ∈ Ω, the interplay condition (C) fails in this
example.
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Unbounded domains: the fully nonlinear uniformly elliptic case

Some non trivial cases in which condition (C) is fulfilled:

(a) Consider the cylinder Ω =
{

(x ′, xN) ∈ IRN−1 × IR : |x ′| < 1 , xN > 0
}

.
Since Ω satisfies condition (G), then (C) is satisfied if b is any
nonnegative bounded and continuous function.

(b)

Ω =
{

(x ′, xN) ∈ IRN−1 × IR : xN > |x ′|q
}

with q > 1. Then, Ω satisfies assumption (wG) with radii

Ry = O
(
|y |1/q

)
as |y | → ∞. In this case, (C) imposes to the function b

a rate of decay b(y) = O
(

1/|y |1/q
)

as |y | → ∞.

(c) Ω is the strictly convex cone
{
x ∈ IRN \ {0} : x/|x | ∈ Γ

}
where Γ is a

proper subset of the unit half-sphere
SN−1

+ =
{
x = (x ′, xN) ∈ IRN−1 × IR : |x | = 1 , xN > 0

}
. In this case,

condition (wG) is satisfied with Ry = O(|y |) for |y | → ∞ and condition
(C) requires on the coefficient b the rate of decay b(y) = O (1/|y |) as
|y | → ∞.

Note that cases (a) and (c) can be seen as limiting cases of situation (b) when,
respectively, q → +∞ and q = 1
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Unbounded domains: the fully nonlinear uniformly elliptic case

Under the assumptions above we proved the following form of the (ABP)
estimate for viscosity subsolutions:

Theorem
Let u ∈ USC(Ω) with supΩ u < +∞ satisfy in the viscosity sense

F (x , u,Du,D2u) ≥ f (x) x ∈ Ω

where f ∈ C(Ω) ∩ L∞(Ω).
If Ω satisfies (wG) for some σ, τ ∈ (0, 1) and F satisfies the structural
conditions

I F is continuous with respect to all variables x , t, p,X

I uniform ellipticity: λTr (Q) ≤ F (x , t, p,X + Q)− F (x , t, p,X ) ≤ ΛTr (Q)
for all Q positive semidefinite and some 0 < λ ≤ Λ

I properness: t 7→ F (x , t, p,X ) is nonincreasing

I linear growth with respect to the gradient F (x , 0, p,O) ≤ β(x) |p| for
some bounded β

and, moreover, the interplay condition (C) holds then,

sup
Ω

u ≤ sup
∂Ω

u+ + C sup
y∈Ω

Ry ‖f −‖Ln(Ωy,τ )

for some positive constant C depending on n, λ, Λ, σ, τ and
supy∈Ω Ry ‖b‖L∞(Ωy,τ )
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Unbounded domains: the fully nonlinear uniformly elliptic case

A fundamental tool in the proof of of the (ABP) estimate for viscosity
subsolutions is the following form of the so-called boundary weak Harnack
inequality.

Let A be a bounded domain in IRN and BR ,BR/τ be concentric balls such that

A ∩ BR 6= ∅ , BR/τ\A 6= ∅ .

For u ∈ LSC(Ā), u ≥ 0, consider the following lower semicontinuous extension
u−m of function u

u−m (x) =

{
min(u(x);m) if x ∈ A
m if x 6∈ A

where m = infx∈∂A∩BR/τ
u(x) .
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Unbounded domains: the fully nonlinear uniformly elliptic case

Lemma (boundary weak Harnack inequality)

With the above notations, if g ∈ C(A) ∩ L∞(A) and u ∈ LSC(Ā) satisfy

u ≥ 0 , P−λ,Λ(D2u)− b(x)|Du| ≤ g(x) in A

in the viscosity sense, then( 1

|BR |

∫
BR

(u−m )p
)1/p

≤ C∗
(

inf
A∩BR

u + R ‖g+‖Ln(A∩BR/τ )

)
where p and C∗ are positive constants depending on λ,Λ,N, τ and on the
product R ‖b‖L∞(BR/τ ).

Here P−λ,Λ is the Pucci minimal operator

P−λ,Λ(X ) = λTr (X+)− ΛTr (X−)

See Caffarelli-Cabré for the case b ≡ 0.
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Directional elliptic operators on special unbounded domains

I will present now some recent results in collaboration with A. Vitolo:
they deal on the the validity of various versions of the wMP for degenerate
elliptic operators F which are strictly elliptic on unbounded domains Ω of Rn

whose geometry is related to the direction of ellipticity.

Some results of that kind for one-directional elliptic operators in bounded
domains have been previously established, among other qualitative properties,
by Caffarelli-Li-Nirenberg CPAM 2013.

We assume the following monotonicity conditions:

I F (x , s, p,Y ) ≥ F (x , s, p,X ) if Y ≥ X [degenerate ellipticity]

I F (x , s, p,X ) ≤ F (x , r , p,X ) if s > r

I F (x , 0, 0,O) = 0 ∀ x ∈ Ω

where O is the zero-matrix
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Unbounded domains and directional ellipticity

Special domains Ω:

set Rn = U
⊕

U⊥, where U is a k-dimensional subspace and U⊥ is its
orthogonal complement and denote by P and Q the projection matrices on U
and U⊥, respectively.

We will assume that the open connected set Ω satisfy the following condition

(F) Ω ⊆ {x ∈ Rn : a ≤ x ·νh ≤ a+d , h = 1, . . . , k} := C for some a ∈ R, d > 0 ,

where {ν1, . . . , νk} is an orthonormal system for the subspace U.
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Unbounded domains and one-directional ellipticity

Domains as Ω are contained in infinite parallelepipeds whose k-dimensional
orthogonal section is a cube of edge d .

They may be unbounded and of infinite Lebesgue measure but they do satisfy
the measure-geometric (wG) condition considered before.

No regularity assumption is made on the boundary ∂Ω:
hence, the classical approach to the Maximum Principle based on smooth
barrier functions is not applicable in our framework.
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Unbounded domains and directional ellipticity

The next assumption is that there exists some ν ∈ U such that

F (x , 0, p,X + tν ⊗ ν)− F (x , 0, p,X ) ≥ λ(x)t for all t > 0

where λ is a continuous, strictly positive function such that
lim infx→∞ λ(x) > 0.

This strictly ellipticity condition on F related to the geometry of Ω will play
a crucial role in our results.

We will assume moreover that

I there exists Λ > 0 such that

F (x , 0, 0,X + tQ)− F (x , 0, 0,X ) ≤ Λt |x | for all t > 0, as |x | → ∞

where Q is the orthogonal projection matrix over U⊥.
The above Lipschitz condition is satisfied in the linear case if the
coefficients corresponding to second derivatives in the ”unbounded
directions” (i.e. belonging to U⊥) have at most linear growth with
respect to x ,

I |F (x , 0, p,X )− F (x , 0, 0,X )| ≤ γ(x)|p| for all p ∈ Rn with γ(x)

continuous and such that γ(x)
λ(x)

is bounded above in Ω by some constant
Γ ≥ 0
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Unbounded domains and directional ellipticity

We will refer collectively to conditions above as the structure condition on F ,
labelled (SC)U.

Observe that both matrices ν ⊗ ν and Q belong to Sn and are positive
semidefinite.
It is worth noting that they comprise a control from below only with respect
to a single direction ν ∈ U and a control from above in the orthogonal
directions, a much weaker condition on F than uniform ellipticity.

The latter one would indeed require a uniform control of the difference
quotients both from below and from above with respect to all possible
increments with positive semidefinite matrices.
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Unbounded domains and directional ellipticity

A very basic example of an F satisfying (SC)U is given by the linear operator

F (x , u,Du,D2u) = λ1(x)
∂2u

∂x2
1

+ · · ·+ λk(x)
∂2u

∂x2
k

+
n∑

i=1

bi (x)
∂u

∂xi
+ c(x)u

which satisfies conditions above with U = {xk+1 = · · · = xn = 0}, provided

λi (x) ≥ λ, i = 1, . . . , k,
∣∣∑

i b
2
i (x)

∣∣1/2 ≤ γ and c(x) ≤ 0.
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Unbounded domains and directional ellipticity

Further examples are provided by fully nonlinear operators of Bellman-Isaacs
type arising in the optimal control of degenerate diffusion processes:

F (x , u,Du,D2u) = sup
α

inf
β

Lαβu, (1)

where

Lαβu =
k∑

i,j=1

aαβij
∂2u

∂xixj
+

n∑
i=1

bαβi

∂u

∂xi
+ cαβu

with constant coefficients depending α and β running in some sets of indexes
A,B.
If Aαβ = [aαβij ] is positive semidefinite for all α, β and

k∑
i,j=1

aαβij νhi ν
h
j ≥ λ, |bαβi | ≤ γ, cαβ ≤ 0, h = 1, . . . , k,

for an orthonormal basis {ν1, . . . , νk} of some k−dimensional subspace U
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Weak Maximum principle

Our results concerning the validity of (wMP) are stated in the following
theorems:

Theorem
Let Ω be a domain of Rn satisfying condition

(F) Ω ⊆ {x ∈ Rn : a ≤ x ·νh ≤ a+d , h = 1, . . . , k} := C for some a ∈ R, d > 0 ,

and assume that F satisfies the structure condition (SC)U.
Then (wMP) holds for any u ∈ USC(Ω) such that u+(x) = o(|x |) as |x | → ∞.

Note that some restriction on the behaviour of u at infinity is unavoidable.
Observe indeed that u(x1, x2, x3) = ex1 sin x2 sin x3 solves the degenerate
Dirichlet problem

∂2u

∂x2
1

+
∂2u

∂x2
2

= 0 in Ω, u(x1, x2, x3) = 0 on ∂Ω

in the 1-infinite cylinder Ω = R× (0, π)2 ⊂ R3 and u(x1, x2, x3) > 0 in Ω so
implying the failure of (wMP)
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Weak Maximum principle

The next is a quantitative form of the above result:

Theorem
Let Ω be a domain of Rn satisfying condition

(F) Ω ⊆ {x ∈ Rn : a ≤ x ·νh ≤ a+d , h = 1, . . . , k} := C for some a ∈ R, d > 0 ,

and assume that F satisfies the structure condition (SC)U.
If

F (x , u,Du,D2u) ≥ f (x) in Ω

where f is continuous and bounded from below and u+(x) = o(|x |) as
|x | → ∞, then

sup
Ω

u ≤ sup
∂Ω

u+ +
e1+d Γ

1 + d Γ
‖ f
−

λ
‖∞ d2

where f −(x) = −min(f (x), 0).

Open question: replace ‖ f
−

λ
‖∞ with ‖ f

−

λ
‖n (ABP)
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Narrow domains and ”moderately wrong” monotonicity

Theorem
Let Ω satisfy condition (F) and assume that F satisfies (SC)U with the weaker
condition

F (x , s, p,M)− F (x , r , p,M) ≤ c(x) (s − r) if s > r

for some continuous function c(x) > 0.

Assume also that c(x)
λ(x)
≤ K < +∞ in Ω. Then (wMP) holds for u ∈ USC(Ω),

u bounded above, provided d2 K is small enough.

For fixed c > 0 this results applies to narrow domains, that is thickness d is
sufficiently small.
Conversely, for fixed d > 0 (wMP) holds provided c is a sufficiently small
positive number (the ”wrong” case).
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A qualitative Phragmén-Lindelöf principle

The above result can be used as an intermediate step in the proof of the
Theorem below concerning the validity of (wMP) for unbounded solutions with
exponential growth at infinity.

Theorem
Let Ω satisfy condition (F) and assume that F satisfies the structure condition
(SC)U .
Then, for any fixed β0 > 0 there exists a positive constant d = d(n, λ,Λ, γ, β0)
such that if Ω has thickness d , then (wMP) holds for functions u such that
u+(x) = O(eβ0|x|) as |x | → ∞.

Conversely, for any fixed d0 > 0 there exists a positive constant
β = β(n, λ,Λ, γ, d0) such that (wMP) holds for functions u such that
u+(x) = O(eβ|x|) as |x | → ∞.
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A qualitative Phragmén-Lindelöf principle

Note that the assumption

F (x , 0, 0,X + tQ)− F (x , 0, 0,X ) ≤ Λt |x | for all t > 0, as |x | → ∞

in the ”unbounded directions ” belonging to U⊥ is essential in order to go
beyond a polynomial growth, as the following example shows.

The function u(x1, x2) = x2
2 sin x1 is a solution of

∂2u

∂x2
1

+
1

2
x2

2
∂2u

∂x2
2

= 0

in the cylinder Ω = (0, π)×R ⊂ R2, u = 0 on ∂Ω but u is strictly positive in Ω
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A numerical criterion for the validity of wMP :
bounded domains+uniform elliptic linear operators

We consider now the case of a bounded domain Ω ⊆ IRn and report on a
characterization result in
Berestycki, Porretta, Rossi, ICD JMPA (2014).

Let us recall some well-known facts in the framework of linear uniformly
elliptic operators

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u, α0 I ≤ A(x) ≤ α1 I

with, say, continuous and bounded coefficients A, b, c, α0 > 0.
Several sufficient conditions of different nature known to imply the validity of
wMP in a bounded domain Ω, e.g.

I (i) c(x) ≤ 0

I (ii) exists φ > 0 in Ω such that L[φ] ≤ 0

I (ii) Ω is narrow (i.e. contained in a suitably small strip)

Examples show that none of these conditions is however necessary for the
validity of the Maximum Principle.
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A numerical criterion for the validity of wMP :
bounded domains+uniform elliptic linear operators

What about sufficient and also necessary conditions or the validity of the
Maximum Principle?

An important characterization result due to Berestycki,Nirenberg and Varadhan
Comm. Pure Appl. Math. 47 (1994) is :

wMP holds for uniformly elliptic operators

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u, A(x) ≥ αI

in a bounded domain Ω if and only if the number λ1 defined by

λ1 := sup{λ ∈ IR : ∃φ > 0 in Ω such that L[φ] + λφ ≤ 0 in Ω}

is strictly positive. In the definition of λ1, φ ∈W 2,p
loc (Ω).

Notably, this very nice numerical criterion was proved to hold under mild
conditions on the coefficients and applies to a large class of domains with
rough boundary ∂Ω.
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A numerical criterion for the validity of wMP :
bounded domains+uniform elliptic linear operators

In the B-N-V result the matrix A(x) is required there to be uniformly positive
definite (not necessarily symmetric). Note that even for symmetric A the
operator L is not in general self-adjoint due to the presence of the drift term b.
Nonetheless, B-N-V proved that the number λ1 in the previous slide shares
some of the properties of the classical principal eigenvalue for the Dirichlet
problem, namely

I there exists a principal eigenfunction w1 > 0 in Ω such that
L[w1] + λ1w1 = 0 in Ω, w1 = 0 on ∂Ω

I w1 is simple

I Reλ ≥ λ1 for any other eigenvalue λ of L

The existence of an associated positive and simple eigenfunction follows from
compactness estimates guaranteed by the Krein-Rutman theorem thanks to
uniform ellipticity of L and boundedness of Ω
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A numerical criterion for the validity of wMP :
bounded domains+uniform elliptic linear operators

The Berestycki-Nirenberg-Varadhan definition above can be expressed by the
equivalent pointwise min-max formula

λ1 = − inf
φ(x)>0

sup
x∈Ω

Lφ(x)

φ(x)

where φ ∈W 2,p
loc (Ω).

The same formula, under more restrictive conditions (smooth boundary,
continuous coefficients), was considered before by M.D. Donsker and S.R.S.
Varadhan in their seminal paper ”On the principal eigenvalue of second-order
elliptic differential operators”, Comm. Pure Appl . Math. 29, 1976.

In that same paper different equivalent representation formulas for λ1 were also
proposed in terms of the average long run behavior of the positive semigroup
generated by L. More precisely,

λ1 = − lim
t→+∞

1

t
log sup

x∈Ω

∫
Ω

p(t, x , y)dy

where p(t, x , y)dy is the positive density defining the semigroup generated by
−L.
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A numerical criterion for the validity of wMP :
bounded domains+degenerate elliptic nonlinear operators

Question:
does the Berestycki-Nirenberg-Varadhan characterization holds true as it is, or
may be with suitable modifications, in the case of degenerate elliptic operators

Tr(A(x)D2u) + b(x) · Du + c(x)u

with A(x) non-negative definite and, more generally, for fully nonlinear
degenerate elliptic operators?
That is, is there a number associated to F and Ω whose positivity enforces the
validity of wMP and conversely?
Recall that the mapping F : Ω× IR× IRn × Sn → IR is degenerate elliptic if
the weak monotonicity condition F is non decreasing in the matrix entry, i.e.

F (x , r , p,X + Y ) ≥ F (x , r , p,X ) ∀ (x , r , p,X ,Y ) , Y ≥ 0

holds. The starting point of the joint research with B-P-R was the observation
that the B-N-V definition of λ1 does not work at this purpose in the case of
degenerate ellipticity as shown by very simple examples.
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A numerical criterion for the validity of wMP :
bounded domains+degenerate elliptic nonlinear operators

Definition.
Given a domain Ω in IRN and an open set O such that Ω ⊂ O and an operator
F positively homogeneous of degree α > 0 in O, we define

µ1(F ,Ω) := sup{λ ∈ IR : ∃Ω′ ⊃ Ω, ∃φ ∈ C(Ω′), φ > 0,F [φ] + λφα ≤ 0 in Ω′}

or, in an equivalent way

µ1(F ,Ω) = − inf
φ(x)>0

sup
x∈Ω′

F [φ(x)]

φ(x)

One cannot expect, in the general case, that µ1(F ,Ω) is a genuine principal
eigenvalue.
However, under uniform ellipticity for F , µ1(F ,Ω) is indeed a genuine principal
eigenvalue with positive eigenfunction for F in Ω, as proved by
Birindelli-Demengel 2006.
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A numerical criterion for the validity of wMP :
bounded domains+degenerate elliptic nonlinear operators

The main difficulty to be faced when considering degenerate operators is the
possible lack of ellipticity at the boundary.
To overcome it we approximate the domain Ω from outside by the domains

Ωε := {x ∈ IRn : dist(x , ∂Ω) < ε}

and consider the generalised principal eigenvalues

λε := sup{λ : ∃φ > 0,F [φ] + λφ ≤ 0 , x ∈ Ωε}

We show then that the validity of the Maximum Principle is characterised by
the positivity of the limit of λε as ε→ 0.
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A numerical criterion for the validity of wMP :
bounded domains+degenerate elliptic nonlinear operators

The result concerning the characterization of the validity of wMP in the
simplified setting where

F (x , u,Du,D2u) = F (D2u)− f (x)

is as follows:

Theorem
Let Ω be a bounded domain in IRn and O an open set such that Ω ⊂ O ⊂ IRn.
Assume that F is continuous, degenerate elliptic, positively homogeneous of
degree α > 0. Assume also that f ∈ C(Ω).
Then,

F satisfies wMP in Ω ⊂⊂ O if and only if µ1(F ,Ω) > 0

For general F extra assumptions are needed, including the Crandall-Ishii-Lions
structural condition to guarantee the comparison property between viscosity
sub and supersolutions.

As far as we know the above result is new even for smooth subsolutions of
degenerate elliptic linear operators
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A numerical criterion for the validity of wMP :
some applications

I zero order operators
F (x , u,Du,D2u) = F (u) ≥ 0, x ∈ Ω , u ≤ 0, x ∈ ∂Ω
If F decreasing and F (0) = 0 then, trivially, µ1 > 0 and
u(x) ≤ F−1(0) = 0 for all x ∈ Ω, [think, for example, to c(x)u ≥ 0 with
c(x) < 0]

I transport operators b(x) · ∇u ≥ 0, x ∈ Ω , u ≤ 0, x ∈ ∂Ω
Not difficult to check that if b vanishes somewhere in Ω then µ1 = 0
On the other hand, if there exists a Lyapunov function L such that
∇L 6= 0 and b · ∇L > 0 then µ1 > 0

I subelliptic operators [see also Mannucci, Comm.Pure Appl.Analysis 2014]
If the ellipticity of F is not degenerate in some direction ν, that is

F (x , r , p,X + ν ⊗ ν)− F (x , r , p,X ) ≥ β > 0

and if the positive constants are supersolutions of F = 0 in O, i.e.,
F (x , 1, 0, 0) ≥ 0 in O, then µ1(F ,Ω) > 0.
This is seen by taking φ(x) = 1− εeσν·x , with σ large and ε small.

Above conditions satisfied for instance by the 2-dimensional Grushin
operator: ∂xx + |x |k∂yy with k an even positive integer.
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A numerical criterion for the validity of wMP :
some applications

I proper operators If maxx∈Ω F (x , r , 0, 0) < 0 for all r > 0 (think about
∆u + c(x)u with c(x) < 0), then it is well-known that wMP holds for F .
On the other hand, as an easy consequence of the definition of viscosity
subsolution, one checks that µ1(F ,Ω) > 0.

I Harvey-Lawson Hessian operators

Hk(D2u) := ηn−k+1(D2u) + . . .+ ηn(D2u),

k an integer between 1 and n, η1(D2u) ≤ η2(D2u) ≤ . . . ≤ ηN(D2u) the
ordered eigenvalues of the matrix D2u.

These are 1-homogeneous degenerate Hessian operators introduced by
F. R. Harvey and H. B. Lawson (2013) to characterize the validity of the
Maximum Principle for operators on Riemannian manifolds depending only
on the eigenvalues of the Hessian matrix.

A test with quadratic polynomials shows that µ1(Hk) > 0.
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A numerical criterion for the validity of wMP :
some applications

I Pucci operators
The Pucci maximal operator Pγ,Γ where 0 < γ < Γ is the 1-homogeneous
uniformly elliptic Hessian operator

Pγ,Γ(D2u) = Γ Σi∈I+ηi (D
2u) + γ Σi∈I−ηi (D

2u)

Here I+, I− correspond, respectively, to positive and negative eigenvalues
of D2u.
It is known that wMP holds for the Pucci maximal operator: this can be
proved as a consequence of the (deep and difficult to prove ) ABP
estimate in Caffarelli-Cabré book.

On the other hand, one can also check directly that µ1(Pγ,Γ) > 0
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Weak Maximum Principle for systems

Consider systems of elliptic partial differential inequalities of the form

F [u] + C(x)u ≥ 0 (2)

Here u = (u1 . . . uN) is a vector-valued function u : IRn → IRN , which is
intended either as a row or as a column on the occasion. Furthermore,
C(x) = (cij(x)) is a N × N matrix-valued function and F = (F1, ...,FN) are
second order operators acting on u, possibly in some weak sense, of the form

Fi [u] = Fi (x , ui ,Dui ,D
2ui ), i = 1 . . .N. (3)

The vector differential inequality (2) is meant to hold component-wise :

Fi [u] +
N∑
j=1

cij(x)uj ≥ 0, i = 1 . . .N. (4)

Question: the weak Maximum Principle, namely the sign propagation property:

ui ≤ 0 on ∂Ω for all i = 1 . . .N implies ui ≤ 0 in Ω for all i = 1 . . .N, (5)

where Ω is a bounded domain of IRn holds true ?
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Weak Maximum Principle for systems

The weak Maximum Principle for system (2) does not hold true in general.
Here a simple example:

Example

∆u1 − u2 = 0 , ∆u2 = 0 in the unit ball B1 ⊂ IRn

The pair (u1, u2) = (1− |x |2,−2n) solves this 2X2 system, u1 = 0, u2 < 0 on
∂B1 but u1 > 0 in B1
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Weak Maximum Principle for systems

In what follows:
very recent results in collaboration with A. Vitolo about the propagation sign
property for such systems in the general context of operators Fi satisfying the
weaker degenerate ellipticity condition

Fi (x , t, ξ,X ) ≤ Fi (x , t, ξ,Y ) ∀ (x , t, ξ) ∈ Ω× IR× IRn. (6)

whenever X ≤ Y . Basic examples of such operators are linear operators of the
form

Fi (x , ui ,Dui ,D
2ui ) = Tr

(
Ai (x)D2ui

)
+ bi (x) · Dui + c i (x)ui , (7)

where Ai (x) are symmetric positive semidefinite matrices, bi (x) vectors in IRn

and c i (x) ∈ IR for all x ∈ Ω.
More general examples are provided by the Bellman type operators

Fi (x , ui ,Dui ,D
2ui ) = sup

γ∈Γ

[
Tr
(
Ai
γ(x)D2ui

)
+ bi

γ(x) · Dui + c iγ(x)ui
]

(8)

where γ is a parameter running in an arbitrary set Γ.
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Weak Maximum Principle for systems

We will also assume on F = (F1 . . .FN) the minimal amount of ellipticity:

(A1) Fi is degenerate elliptic for all i = 1 . . .N, that is (6) holds
We also make the technical assumptions
(A2) Fi [0] = Fi (x , 0, 0, 0) = 0 for all x ∈ Ω
(A3) Fi = F (x , t, ξ,X ) continuous in Ω× R× RN × SN

Concerning C(x) = (cij(x)) ∈MN , the space of the N × N real matrices, we
assume:
(C1) C ∈ C(Ω;MN), that is C is a continuous mapping from Ω to MN

(C2) C is cooperative, that is

cij(x) ≥ 0 ∀ i 6= j ,
N∑
j=1

cij(x) ≤ 0, i = 1 . . .N , (9)

Observe that (C2) implies cii (x) ≤ −
∑

j 6=i cij(x) ≤ 0 for i = 1 . . .N in
agreement with what is well-known in relation with the weak Maximum
Principle in the diagonal case cij ≡ 0 for i 6= j .
Observe also that (C2) is not satisfied in the previous example
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Weak Maximum Principle for systems

In connection with the system we consider the the extremal scalar operator

F ∗(x , t, ξ,X ) = F1(x , t, ξ,X ) ∨ · · · ∨ FN(x , t, ξ,X ) ≡ max
i=1...N

Fi (x , t, ξ,X ) (10)

Our first result in this setting is as follows:

Theorem
Let Ω be a bounded domain in IRn. Suppose that F is a vector mapping with
components Fi satisfying conditions (A1)÷ (A3) for i = 1 . . .N and C a matrix
valued function satisfying conditions (C1)− (C2).
Assume that the sign propagation property

w ≤ 0 on ∂Ω ⇒ w ≤ 0 in Ω

holds for all viscosity subsolutions w ∈ C(Ω; IR) of the scalar equation
F ∗[w ] = 0.
Then the same property (5) holds for all viscosity subsolutions u ∈ C(Ω; IRN)
of the vectorial equation F [u] + C(x)u = 0 in Ω.
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Weak Maximum Principle for systems

As we have seen before, in the scalar case N = 1, for operators G which are
positively homogeneous of degree 1 the validity of the weak Maximum Principle
is guaranteed by, and in fact characterised, by the positivity of the number

µ1(G ,Ω) = sup{λ ∈ IR : ∃Ω′ c Ω and ψ ∈ C(Ω′), ψ > 0 : G [ψ]+λψ ≤ 0 in Ω′}
(11)

This rather implicit definition of the index µ1(G ,Ω), requiring G to be defined
on larger set, is motivated, in particular, by possible degeneracies occurring on
∂Ω.

The main result in this context is (see Berestycki,CD, Porretta,Rossi) that the
weak Maximum Principle, where the boundary condition is intended in the
viscosity sense, holds for functions, u ∈ USC(Ω), such that G [u] ≥ 0 in the
viscosity sense if and only if µ1(G ,Ω) > 0, provided G satisfies the assumptions
which guarantee comparison between viscosity sub and supersolutions satisfying
boundary conditions in the viscosity sense.
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Weak Maximum Principle for systems

Relying on this result in the scalar case we obtained the following for systems:

Theorem
Let Ω be a bounded domain in IRn. Suppose that C a matrix valued function
satisfying conditions (C1)− (C2) and F is a vector mapping with components
Fi satisfying conditions (A1)÷ (A6) for i = 1 . . .N on an open set Ω′ such that
Ω′ c Ω.
If µ1(F ∗,Ω) > 0 then the sign propagation property (5) holds for any
u ∈ C(Ω; IRN) such that F [u] + C(x)u ≥ 0 in Ω in the viscosity sense.

It is worth to remark that since Fi ≤ F ∗, definition (11) implies

µ1(F ∗,Ω) ≤ µ1(Fi ,Ω) ∀ i = 1 . . .N. (12)
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Weak Maximum Principle for systems

Consider now the operators Fi and the sets

Eλ(Fi ,Ω) = {ψ ∈ C(Ω′) : ψ > 0 and : Fi [ψ] + λψ ≤ 0 in some Ω′ c Ω}, (13)

so that
µ1(FI ,Ω) = sup{λ ∈ IR : Eλ(Fi ,Ω) 6= ∅} . (14)

Next, we introduce a new index associated to the vector operator
F = (F1 . . .FN) by setting

µ1(F ,Ω) = sup{λ ∈ IR : Eλ(F1,Ω) ∩ · · · ∩ Eλ(Fn,Ω) 6= ∅} (15)

It is easy to check that
µ1(F ∗,Ω) ≤ µ1(F ,Ω). (16)

We will see in Lemma 12 below that also the reverse inequality is true when
µ1(F ,Ω) > 0. As a consequence of this, Theorem 9 can be equivalently
restated by replacing µ1(F ∗,Ω) with µ1(F ,Ω).
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Weak Maximum Principle for systems

Theorem 9’. Let Ω be a bounded domain in IRn. Suppose that C a matrix
valued function satisfying conditions (C1)− (C2) and F is a vector mapping
with components Fi satisfying conditions (A1)÷ (A6) for i = 1 . . .N on an
open set Ω′ such that Ω′ c Ω.
If µ1(F ,Ω) > 0 then the sign propagation property (5) holds for any
u ∈ C(Ω; IRN) such that F [u] + C(x)u ≥ 0 in Ω in the viscosity sense.

Let us indicate the main tools in the proofs of the above results.

For a pair of real numbers s and t we set s ∨ t = max (s, t) and
s ∧ t = min (s, t). We will use in the sequel the following properties of viscosity
solutions:

G [u] ≥ f , G [v ] ≥ h ⇒ G [u ∨ v ] ≥ f ∧ h;

G [u] ≤ f , G [v ] ≤ h ⇒ G [u ∧ v ] ≤ f ∨ h.
(17)

In view of the above definition, u = (u1 . . . uN) ∈ C(Ω; IRN) is a viscosity
subsolution of the differential system F [u] + C(x)u ≥ 0 if the function
ui ∈ C(Ω; IR) is a viscosity subsolution of the i-th equation:

Fi (x , ui ,Dui ,D
2ui ) + cii (x)ui ≥ −

∑
j 6=i

cij(x)uj(x). (18)

for each i = 1 . . .N
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Weak Maximum Principle for systems

Using this observation, we obtain differential inequalities for the positive parts
u+
i = ui ∨ 0:

Lemma
Assume that Fi satisfies conditions (A1)÷ (A3), and C(x) satisfies conditions
(C1)− (C2). If u = (u1 . . . uN) is a viscosity solution of the differential system
(18), then

Fi (x , u
+
i ,Du

+
i ,D

2u+
i ) ≥ −

N∑
j=1

cij(x)u+
j (x) (19)

Next, we will reduce to a single scalar equation which resumes the information
of the system. To do this we construct, starting from the Fi ’s, the scalar
operator

F ∗ = F1 ∨ · · · ∨ FN . (20)

and observe that, in view of Lemma 10:

F ∗[u+
i ](x) ≥ −

N∑
j=1

cij(x)u+
j (x), i = 1 . . .N, (21)

in the viscosity sense.
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Weak Maximum Principle for systems

Consider now the continuous scalar function

u∗ = u+
1 ∨ · · · ∨ u+

N (22)

Lemma
Assume that Fi and C(x) satisfy the conditions of Lemma 10. Let
u = (u1 . . . uN) be a viscosity subsolution of system (2). Then,

F ∗[u∗] = F ∗(x , u∗,Du∗,D2u∗) ≥ 0 (23)

in the viscosity sense in Ω.
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Weak Maximum Principle for systems

We conclude with the proof of Theorem 1.
Theorem 1. Let Ω be a bounded domain in IRn. Suppose that F is a vector
mapping with components Fi satisfying conditions (A1)÷ (A3) for i = 1 . . .N
and C a matrix valued function satisfying conditions (C1)− (C2).
Assume that the sign propagation property w ≤ 0 on ∂Ω implies w ≤ 0 in Ω
holds for all viscosity subsolutions w ∈ C(Ω; IR) of the scalar equation
F ∗[w ] = 0.
Then the same property (5) holds for all viscosity subsolutions u ∈ C(Ω; IRN)
of the vectorial equation F [u] + C(x)u = 0 in Ω.
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Weak Maximum Principle for systems

Dimostrazione.
Suppose that u = (u1 . . . uN) satisfy Fi [u] +

∑N
j=1 cij(x)uj ≥ 0, i = 1 . . .N in

the viscosity sense and the boundary condition. By Lemma 11 we know that,
for F ∗ = F1 ∨ · · · ∨ FN and u∗ = u+

1 ∨ · · · ∨ u+
N , the scalar differential inequality

F ∗[u∗] ≥ 0 holds in Ω and, of course, the boundary condition u∗ ≤ 0 on ∂Ω is
satisfied as well.
Using the assumption with w = u∗ we obtain u∗ ≤ 0. A fortiori, ui ≤ 0 in Ω
for all i = 1 . . .N, as we needed to prove.
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Weak Maximum Principle for systems

Let us recall the definition of the numerical index µ1(F ∗,Ω):

µ1(F ∗,Ω) = sup{λ ∈ IR : ∃Ω′ c Ω and ψ ∈ C(Ω′), ψ > 0 : F ∗[ψ]+λψ ≤ 0 in Ω′}

where F ∗ is the scalar mapping F ∗ = F1 ∨ · · · ∨ FN , see (11) .
To exploit the relationship between the strict positivity of this so called
generalised principal eigenvalue µ1(F ∗,Ω) and the validity of the weak
Maximum Principle we need to introduce further conditions on F : (A4) Fi

positively homogeneous of degree 1 with respect to (t, ξ,X ),
(A5) t → Fi (x , t, ξ,X ) continuous, uniformly with respect to (x , ξ,X ),
(A6) for all R > 0 there exists ω ∈ C(R+) such that ω(s)→ 0 as s → 0+ and

Fi (x , t, α(x − y),X )− Fi (y , t, α(x − y),Y ) ≤ ω(α|x − y |2 + |x − y |) (24)

for all X ,Y ∈ Sn such that, for some α > 0,

− 3α

(
I 0
0 I

)
≤
(

X 0
0 −Y

)
≤ 3α

(
I −I
−I I

)
. (25)

Observe that (A6) implies in particular degenerate ellipticity. We will suppose
that conditions (A1)÷ (A6) are satisfied for (t, ξ,X ) ∈ IR× IRn × Sn and for
x ∈ Ω′, where Ω′ is such that Ω b Ω′. Observe also that if each Fi satisfies
(A1)÷ (A6) then the same is true for F ∗.
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Weak Maximum Principle for systems

Recall that we have introduced the index

µ1(F ,Ω) = sup{λ ∈ IR : Eλ(F1,Ω) ∩ · · · ∩ Eλ(Fn,Ω) 6= ∅},

where Eλ(G ,Ω) is defined by (13) as

Eλ(Fi ,Ω) = {ψ ∈ C(Ω′) : ψ > 0 and Fi [ψ] + λψ ≤ 0 in some Ω′ c Ω}.

We have already observed that µ1(F ,Ω) is larger than µ1(F ∗,Ω). The
following lemma states that the positivity of µ1(F ,Ω) is equivalent to the
positivity of µ1(F ∗,Ω).

Lemma
Assume that conditions (A1)÷ (A6) are satisfied in an open set Ω′ c Ω. Then
µ1(F ,Ω) > 0 implies µ1(F ,Ω) = µ1(F ∗,Ω).
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Weak Maximum Principle for systems

Let us conclude this section by a few significant model examples involving
degenerate elliptic operators where the condition µ1(F ∗,Ω) > 0 is easily
checked through a positive lower bound of µ1(F ∗,Ω) = µ1(F ,Ω), so enforcing
through Theorem 2 the validity of the weak Maximum Principle for the
cooperative system F [u] + C(x)u ≥ 0.

Example

Consider linear operators as in

Fi (x , ui ,Dui ,D
2ui ) = Tr

(
Ai (x)D2ui

)
+ bi (x) · Dui + c i (x)ui , (26)

with positive semidefinite matrices Ai with, just for simplicity, constant entries
and null lower order terms. Let Ω b BR be contained in BR , the ball of radius
R centered at the origin.

The function ψ(x) = R2

2
− |x|

2

2
is strictly positive in BR and D2ψ = −I .

Assume that Tr(Ai ) > 0 for each i = 1 . . .N. Then

Tr(AiD2ψ) + λψ = −Tr(Ai ) +
λ

2

(
R2 − |x |2

)
≤ 0 in BR ,

provided that λ ≤ 2Tr(Ai )/R2 for all i = 1 . . .N.
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Weak Maximum Principle for systems

Therefore

µ1(F ,Ω) ≥ 2

R2
Tr(A1) ∧ · · · ∧ Tr(An).

Since the Ai are positive semidefinite matrices, the extra assumption
Tr(Ai ) > 0 amounts to the requirement that each linear operator is strictly
elliptic at least in one coordinate direction.

Example

Assume that Fi are completely degenerate first order operators of the form
Fi [ui ] = bi · Dui + c iui . Suppose there exists ψ > 0 such that ∇ψ 6= 0 in
Ω′ c Ω.
If bi · ∇ψ|∇ψ| ≤ −β

i in Ω′ for all i = 1 . . .N, with β i > 0 and c i ≤ 0, then

Fi [ψ] + λψ ≤ −β i |∇ψ|+ c iψ + λψ ≤ −β i |∇ψ|+ λψ ≤ 0 in Ω′,

provided that λ ≤ κ := infΩ′ |∇ψ|/ψ > 0. Therefore

µ1(F ,Ω) ≥ κ
(
β1 ∧ · · · ∧ βN) > 0 .
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Weak Maximum Principle for systems

Example

Consider the extremal partial trace operators

P−k [ui ] =
k∑

h=1

λh(D2ui ), P+
k [ui ] =

n∑
h=n−k+1

λh(D2ui ) (27)

Take as before BR c Ω and ψ(x) = R2

2
− |x|

2

2
> 0 in BR . Then,

P−ki (D2ψ) + λψ = −ki +
λ

2
(R2 − |x |2) ≤ 0,

provided that λ ≤ 2ki/R
2 for all i = 1 . . .N.

Therefore

µ1(F ,Ω) ≥ 2

R2
k1 ∧ · · · ∧ kN ≥

2

R2
> 0
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A digression into numerical linear algebra: a toy example

Consider the Dirichlet problem

∆u = 0 in Ω u = g on ∂Ω

where Ω is a square in IR2 and discretize the problem by overlaying the domain
with a square mesh containing 4 interior point at equally spaced intervals of
length h:
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A digression into numerical linear algebra: a toy example

Approximate uxx and uyy at the interior grid points by the second-order
centered difference formula:

uxx(xi , yj) =
u(xi − h, yj)− 2u(xi , yj) + u(xi + h, yj)

h2
+ O(h2)

uyy (xi , yj) =
u(xi , yj − h)− 2u(xi , yj) + u(xi+, yj + h)

h2
+ O(h2)

With the notation uij = u(xi , yj), add the two expressions above and use the
fact ∆u(x , y) = 0 at the interior points to produce

4uij =
(
ui−1j + ui+1j + uij−1 + uij+1

)
+ O(h4)

Neglecting the error term we come up with the five-point difference equation

(
⊕

) 4uij −
(
ui−1j + ui+1j + uij−1 + uij+1

)
= 0 for i , j = 1, 2

It is easy to realize that these equations form a 2× 2 linear system in which the
unknowns are the uij and the right-hand side contains boundary values
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A digression into numerical linear algebra: a toy example

Indeed, for i = j = 1 the above formula (
⊕

) gives

4u11 − u12 − u21 = u01 + u10 = g01 + g10

and similarly for the remaining pair of indexes, yielding to the linear algebraic

system
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A digression into numerical linear algebra: a toy example

The matrix ∆h on the left-hand side (the discrete Laplacian) is symmetric and
positive definite so that ∆−1

h exists, the off-diagonal elements are ≤ 0, is
diagonally dominant (i.e. δii >

∑
i 6=j |aij |.

Such matrices are known in linear algebra as M-matrices. The eigenvalues of
∆h are λ1(∆h) = 6, λ2(∆h) = 4 = λ3(∆h), λ4(∆h) = 2 with corresponding
eigenvectors
v1 = (1,−1,−1, 1), v2 = (−1, 0, 0, 1), v3 = (0,−1,−0, 1), v4 = (1, 1, 1, 1).

The inverse matrix ∆−1
h is

7/24 1/12 1/12 1/24
1/12 7/24 1/24 1/12
1/12 1/24 7/24 1/12
1/24 1/12 1/12 7/24
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A digression into numerical linear algebra: the discrete weak
Maximum Principle

Since, as we have seen, the entries of the inverse matrix ∆−1
h are > 0, it is

evident that if the boundary data g is ≤ 0, then the values of the approximate
solution of the Dirichlet problem

∆u = 0 in Ω u = g on ∂Ω

namely uh = ∆−1
h ĝ , where ĝ = (g01,+g10, g31 + g20, g02,+g13, g32,+g23), at the

interior nodes are ≤ 0 as well.
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A digression into numerical linear algebra: the discrete weak
Maximum Principle

This shows that a discrete Maximum Principle holds:

ĝ ≤ 0 at all boundary nodes =⇒ uh ≤ 0 at all interior nodes

Denoting by J the set of interior nodes and by J+(ĝ) the set of boundary nodes
where ĝ < 0 the following more precise result [Stoyan] holds in fact:

max
J

uh = max
J+(ĝ)

ĝ
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A digression into numerical linear algebra: Perron-Frobenius

Since ∆−1
h has strictly positive entries (and diagonally dominant), the classical

Perron-Frobenius Theorem applies giving the following informations:
I there is a unique eigenvalue p(∆−1

h ) such that

p(∆−1
h ) > 0 , p(∆−1

h ) = max
1≤i≤n

µi (∆−1
h )

I p(∆−1
h ) is simple and the corresponding one-dimensional eigenspace is

generated by a strictly positive eigenvector
I

p(∆−1
h ) = max{µ ≥ 0 : ∃x ≥ 0 , ∆−1

h x ≥ µx} =

= min{µ > 0 : ∃x > 0 , ∆−1
h x ≤ µx}

I the Collatz-Wielandt formula:

p(∆−1
h ) = max

x∈S∈I
min

1≤i≤n

(∆−1
h x)i
xi

=

= min
x∈S∈I

max
1≤i≤n

(∆−1
h x)i
xi

where S is the simplex {x = (x1, ..., xn) : xi ≥ 0 ,
∑

i=1,...,n xi = 1}
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A digression into numerical linear algebra: Perron-Frobenius

A different formula [Birkhoff-Varga] for the Perron eigenvalue of a matrix
A = (ai,j) with strictly > 0 entries is

p(A) = max
x≥0,|x|=1

min
y≥0,|y|=1

Ax · y
x · y = min

y≥0,|y|=1
max

x≥0,|x|=1

Ax · y
x · y
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A digression into numerical linear algebra: Perron-Frobenius

Coming back to our example, computation shows that p(∆−1
h ) = λ4(∆h) = 1

2

with corresponding eigenvector (1, 1, 1, 1)

The above discussion is valid for any number of interior points; in the general
case the matrix ∆h has the following symmetric block-tridiagonal form

So we have seen that for the matrix ∆h the Maximum Principle holds and also
the principal eigenvalue is positive.
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Cloe, my patient assistant
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